波多野结衣 蜜桃视频,国产在线精品露脸ponn,a v麻豆成人,AV在线免费小电影

公告:魔扣目錄網為廣大站長提供免費收錄網站服務,提交前請做好本站友鏈:【 網站目錄:http://www.ylptlb.cn 】, 免友鏈快審服務(50元/站),

點擊這里在線咨詢客服
新站提交
  • 網站:51998
  • 待審:31
  • 小程序:12
  • 文章:1030137
  • 會員:747

php小編柚子在這里為大家介紹一個關于生成 X.509 證書的問題。有時候在使用自定義 crypto.Signer 實現生成證書的過程中,可能會遇到一個無法使用的問題。這個問題可能會讓開發者感到困惑,不知道如何解決。在本文中,我們將探討這個問題的原因,并提供一些解決方案,以幫助開發者順利生成自己的 X.509 證書。

問題內容

我正在嘗試根據存儲在 hsm 中的 rsa 密鑰對生成 x.509 證書。我使用此 pkcs #11 實現與我的 hsm 進行通信。

由于我的加密對象存儲在后者中,如果我想要執行的操作需要私鑰(例如簽名),我必須實現 crypto.signer 接口才能“訪問私鑰” 。這是這個實現。

type rsasigner struct {
    privatekey p11.privatekey
    publickey  *rsa.publickey
}

func (s rsasigner) public() crypto.publickey {
    return s.publickey
}

func (s rsasigner) sign(_ io.reader, digest []byte, _ crypto.signeropts) ([]byte, error) {
    return s.privatekey.sign(pkcs11.mechanism{mechanism: pkcs11.ckm_sha512_rsa_pkcs}, digest)
}

func newrsasigner(privatekey p11.privatekey) (*rsasigner, error) {
    var (
        modulus, publicexponent []byte
        err                     error
    )

    // retrieve modulus n from the private key
    // reminder: n = p * q
    modulus, err = p11.object(privatekey).attribute(pkcs11.cka_modulus)
    if err != nil {
        return nil, err
    }

    // retrieve public exponent (e: "always" 65537) from the private key
    // reminder: φ(n) = (p - 1) * (q - 1), e such that 1 < e < φ(n) and e and φ(n) are co prime
    publicexponent, err = p11.object(privatekey).attribute(pkcs11.cka_public_exponent)
    if err != nil {
        return nil, err
    }

    // public key is (e, n)
    publickey := &rsa.publickey{
        n: new(big.int).setbytes(modulus),
        e: int(big.newint(0).setbytes(publicexponent).uint64()),
    }

    return &rsasigner{privatekey: privatekey, publickey: publickey}, nil
}

登錄后復制

這個實現有效。例如,要創建 csr,createcertificaterequest 函數需要私鑰來簽署 csr(priv any 參數),這是我提供 rsasigner 實例的地方。

createcertificate函數有些類似,參數pub是要生成的證書的公鑰,priv是簽名者的私鑰。

在下面的代碼中,我嘗試生成自簽名的x.509證書,因此根據api,templateparent參數是相同的。

func (t *token) x509(id, objecttype, output string) ([]time.duration, error) {
    startfunction := time.now()

    var (
        keytype            int
        privatekeytemplate []*pkcs11.attribute
        privatekeyobject   p11.object
        err                error
        timings            []time.duration
        signer             *rsasigner
        cert               []byte
        file               *os.file
        writtenbytes       int
    )

    objecttype = strings.tolower(objecttype)

    if objecttype != "rsa" && objecttype != "ec" {
        logger.fatalf("%s: unrecognized type, it can only be equal to rsa or ec", objecttype)
    }

    switch objecttype {
    case "rsa":
        keytype = pkcs11.ckk_rsa
    case "ec":
        keytype = pkcs11.ckk_ec
    }

    // creation of the template to find the private key based on the given id (pkcs #11 attribute cka_id)
    privatekeytemplate = []*pkcs11.attribute{
        pkcs11.newattribute(pkcs11.cka_key_type, keytype),
        pkcs11.newattribute(pkcs11.cka_class, pkcs11.cko_private_key),
        pkcs11.newattribute(pkcs11.cka_id, id),
    }

    startfindobject := time.now()
    privatekeyobject, err = t.session.findobject(privatekeytemplate)
    timings = append(timings, time.since(startfindobject))
    if err != nil {
        return nil, err
    }

    // creation of the x.509 certificate template
    certtemplate := &x509.certificate{
        serialnumber: big.newint(2023),
        subject: pkix.name{
            commonname: "test",
        },
        signaturealgorithm: x509.sha512withrsa,
        notbefore:          time.now(),
        notafter:           time.now().adddate(1, 0, 0),
    }

    // instantiate the rsasigner with the found private key object
    signer, err = newrsasigner(p11.privatekey(privatekeyobject))
    if err != nil {
        return nil, err
    }

    startcreatecert := time.now()
    cert, err = x509.createcertificate(rand.reader, certtemplate, certtemplate, signer.publickey, signer)
    timings = append(timings, time.since(startcreatecert))
    if err != nil {
        return nil, err
    }

    file, err = os.create(output)
    if err != nil {
        return nil, err
    }

    writtenbytes, err = file.write(cert)
    if err != nil {
        return nil, err
    }

    logger.printf("wrote %d bytes in %s", writtenbytes, output)

    return append(timings, time.since(startfunction)), nil
}

登錄后復制

無論密鑰類型(rsa 或 ec)如何,此函數都會返回以下錯誤。

FATA[2022-12-22 10:48:50] x509: signature over certificate returned by signer is invalid: crypto/rsa: verification error

登錄后復制

如果 crypto.signer 實現未正確完成,則會返回此錯誤。

我實現了 crypto.signer 來嘗試使用橢圓曲線上的密鑰對執行相同的操作,但錯誤是相同的。

我還在 sign 函數中嘗試了不同的哈希算法,但它沒有改變任何東西。

該錯誤似乎來自 crypto.signer 的實現,盡管它可以用于生成 csr。

解決方法

盡管我幾個月前就已經找到了這個問題的解決方案,但我從未花時間分享答案,但是,現在是時候了。

當我們直接通過 pkcs #11 進行簽名時,我們需要通過使用此處引用的 digestinfo 值手動為哈希添加前綴來管理哈希前綴:https://www.rfc-editor.org/rfc/rfc3447#page-43。

更準確地說,對于 rsassa-pkcs1-v1_5 簽名,實際簽名函數的輸入是 asn.1 der 編碼的結構。 pkcs #11 具有特定于哈希的機制(例如ckm_sha256_rsa_pkcs),它們知道如何生成該結構,但它們都假設數據未經過哈希處理,而加密貨幣的情況并非如此。 signer 接口,因此我們必須使用通用的 cka_rsa_pkcs 機制,該機制僅執行原始簽名操作。這意味著我們必須自己生成 asn.1 結構,只需為我們可能想要使用的所有哈希值提供正確的前綴即可做到這一點。

借助crypto.signeropts類型的opts參數,我們可以在以下情況下檢索crypto.hash類型的哈希函數的標識符:調用 sign() 函數,并應用正確的前綴。

type signer struct {
    prikey p11.privatekey
    pubkey *rsa.publickey
}

var hashprefixes = map[crypto.hash][]byte{
    crypto.sha256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
    crypto.sha384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
    crypto.sha512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
}

func (s signer) public() crypto.publickey {
    return s.pubkey
}

func (s signer) sign(_ io.reader, digest []byte, opts crypto.signeropts) ([]byte, error) {
    return s.prikey.sign(*pkcs11.newmechanism(pkcs11.ckm_rsa_pkcs, nil), append(hashprefixes[opts.hashfunc()], digest...))
}

func newsigner(key p11.privatekey) (*signer, error) {
    // retrieve modulus n from the private key
    // reminder: n = p * q
    modulus, err := p11.object(key).attribute(pkcs11.cka_modulus)
    if err != nil {
        return nil, err
    }

    var pubexp []byte
    // retrieve public exponent (e: "always" 65537) from the private key
    // reminder: φ(n) = (p - 1) * (q - 1), e such that 1 < e < φ(n) and e and φ(n) are co prime
    pubexp, err = p11.object(key).attribute(pkcs11.cka_public_exponent)
    if err != nil {
        return nil, err
    }

    // public key is (e, n)
    pubkey := &rsa.publickey{
        n: new(big.int).setbytes(modulus),
        e: int(new(big.int).setbytes(pubexp).uint64()),
    }

    return &signer{prikey: key, pubkey: pubkey}, nil
}

登錄后復制

它就像一個魅力。不過,還有更好的事情要做。

ckm_rsa_pkcs機制提供rsassa-pkcs1-v1_5類型的簽名。我留給感興趣的讀者自己研究這個舊的簽名方案,該方案不應再在新產品/軟件中使用。

確實,建議使用ckm_rsa_pkcs_pss機制,它提供rsassa-pss類型的簽名。

從這個原則出發,這是我現在使用的實現。

type Signer struct {
    priKey p11.PrivateKey
    pubKey *rsa.PublicKey
}

var sigAlg = map[crypto.Hash]uint{
    crypto.SHA256: pkcs11.CKM_SHA256_RSA_PKCS_PSS,
    crypto.SHA384: pkcs11.CKM_SHA384_RSA_PKCS_PSS,
    crypto.SHA512: pkcs11.CKM_SHA512_RSA_PKCS_PSS,
}

var mgf = map[crypto.Hash]uint{
    crypto.SHA256: pkcs11.CKG_MGF1_SHA256,
    crypto.SHA384: pkcs11.CKG_MGF1_SHA384,
    crypto.SHA512: pkcs11.CKG_MGF1_SHA512,
}

func (s Signer) Public() crypto.PublicKey {
    return s.pubKey
}

func (s Signer) Sign(_ io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
    return s.priKey.Sign(*pkcs11.NewMechanism(pkcs11.CKM_RSA_PKCS_PSS, pkcs11.NewPSSParams(sigAlg[opts.HashFunc()], mgf[opts.HashFunc()], uint(opts.HashFunc().Size()))), digest)
}

func NewSigner(key p11.PrivateKey) (*Signer, error) {
    // Retrieve modulus n from the private key
    // Reminder: n = p * q
    modulus, err := p11.Object(key).Attribute(pkcs11.CKA_MODULUS)
    if err != nil {
        return nil, err
    }

    var pubExp []byte
    // Retrieve public exponent (e: "always" 65537) from the private key
    // Reminder: φ(n) = (p - 1) * (q - 1), e such that 1 < e < φ(n) and e and φ(n) are co prime
    pubExp, err = p11.Object(key).Attribute(pkcs11.CKA_PUBLIC_EXPONENT)
    if err != nil {
        return nil, err
    }

    // Public key is (e, n)
    pubKey := &rsa.PublicKey{
        N: new(big.Int).SetBytes(modulus),
        E: int(new(big.Int).SetBytes(pubExp).Uint64()),
    }

    return &Signer{priKey: key, pubKey: pubKey}, nil
}

登錄后復制

因此不再需要前綴,但是需要哈希算法標識符和要使用的簽名算法以及要使用的mgf之間的對應關系。

最后,在go中,使用的簽名算法不再是x509.sha256withrsa、x509.sha384withrsax509.sha512withrsa,而是 sha256withrsapsssha384withrsapsssha512withrsapss

簽約愉快。

分享到:
標簽:加密貨幣
用戶無頭像

網友整理

注冊時間:

網站:5 個   小程序:0 個  文章:12 篇

  • 51998

    網站

  • 12

    小程序

  • 1030137

    文章

  • 747

    會員

趕快注冊賬號,推廣您的網站吧!
最新入駐小程序

數獨大挑戰2018-06-03

數獨一種數學游戲,玩家需要根據9

答題星2018-06-03

您可以通過答題星輕松地創建試卷

全階人生考試2018-06-03

各種考試題,題庫,初中,高中,大學四六

運動步數有氧達人2018-06-03

記錄運動步數,積累氧氣值。還可偷

每日養生app2018-06-03

每日養生,天天健康

體育訓練成績評定2018-06-03

通用課目體育訓練成績評定