日日操夜夜添-日日操影院-日日草夜夜操-日日干干-精品一区二区三区波多野结衣-精品一区二区三区高清免费不卡

公告:魔扣目錄網為廣大站長提供免費收錄網站服務,提交前請做好本站友鏈:【 網站目錄:http://www.ylptlb.cn 】, 免友鏈快審服務(50元/站),

點擊這里在線咨詢客服
新站提交
  • 網站:51998
  • 待審:31
  • 小程序:12
  • 文章:1030137
  • 會員:747

——————-課程目錄——————-( U) A' Y4 b5 G8 Q

2 A0 M3 I5 {# B$ F( U$ Z

  01_handout.pdf7 q& A7 g9 I6 u- ]5 Y( }

  02_handout.pdf6 H5 {. k5 ?  C: Y! [- u) @: _

  03_handout.pdf

  04_handout.pdf, A+ j. }  P. o+ d2 |

  05_handout.pdf

  06_handout.pdf

  07_handout.pdf

  08_handout.pdf4 l% U$ a" ~! u) R5 W4 P; s* T" i

  09_handout.pdf/ M5 B& O0 m6 B! N. N

  1 – 1 – Course Introduction (10-58).mp4

  1 – 2 – What is Machine Learning (18-28).mp4& J! d7 K" E+ J. k7 B

  1 – 3 – Applications of Machine Learning (18-56).mp4

  1 – 4 – Components of Machine Learning (11-45).mp4

  1 – 5 – Machine Learning and Other Fields (10-21).mp40 o$ l: s9 D: B3 n

  10 – 1 – Logistic Regression Problem (14-33).mp4

  10 – 2 – Logistic Regression Error (15-58).mp4

  10 – 3 – Gradient of Logistic Regression Error (15-38).mp4

  10 – 4 – Gradient Descent (19-18).mp44 u* J" P* Q$ j' `

  10_handout.pdf8 i& V. f: s( b0 z# Q6 U

  11 – 1 – Linear Models for Binary Classification (21-35).mp4

  11 – 2 – Stochastic Gradient Descent (11-39).mp4

  11 – 3 – Multiclass via Logistic Regression (14-18).mp4: \\9 X1 v! h5 q4 ]5 t6 c8 J, v

  11 – 4 – Multiclass via Binary Classification (11-35).mp4

  11_handout.pdf0 L* x5 E- i, _% V1 Q

  12 – 1 – Quadratic Hypothesis (23-47).mp4+ u  B, X8 Y- C4 ?9 j7 n$ v) Q- j9 B

  12 – 2 – Nonlinear Transform (09-52).mp4

  12 – 3 – Price of Nonlinear Transform (15-37).mp4

  12 – 4 – Structured Hypothesis Sets (09-36).mp4

  12_handout.pdf

  2 – 1 – Perceptron Hypothesis Set (15-42).mp4

  2 – 2 – Perceptron Learning Algorithm (PLA) (19-46).mp4

  2 – 3 – Guarantee of PLA (12-37).mp41 a) Y* |/ G5 m& m

  2 – 4 – Non-Separable Data (12-55).mp4/ f) }  y/ {& c6 n2 j! m

  3 – 1 – Learning with Different Output Space (17-26).mp4$ Y4 ?; q, {! t" T4 B+ U

  3 – 2 – Learning with Different Data Label (18-12).mp4: m6 c2 r! o; Y/ G6 B

  3 – 3 – Learning with Different Protocol (11-09).mp4

  3 – 4 – Learning with Different Input Space (14-13).mp4

  4 – 1 – Learning is Impossible- (13-32).mp4$ b8 y# b" E; k3 m

  4 – 2 – Probability to the Rescue (11-33).mp4

  4 – 3 – Connection to Learning (16-46).mp45 j. v. R4 R7 U% @6 ?

  4 – 4 – Connection to Real Learning (18-06).mp4& I" `( m4 s* F9 P

  5 – 1 – Recap and Preview (13-44).mp4$ t/ }! m7 y6 M% o

  5 – 2 – Effective Number of Lines (15-26).mp4

  5 – 3 – Effective Number of Hypotheses (16-17).mp4

  5 – 4 – Break Point (07-44).mp4

  6 – 1 – Restriction of Break Point (14-18).mp4

  6 – 2 – Bounding Function- Basic Cases (06-56).mp4

  6 – 3 – Bounding Function- Inductive Cases (14-47).mp4

  6 – 4 – A Pictorial Proof (16-01).mp4– F; g8 m5 i+ S2 D: H

  7 – 1 – Definition of VC Dimension (13-10).mp4

  7 – 2 – VC Dimension of Perceptrons (13-27).mp4

  7 – 3 – Physical Intuition of VC Dimension (6-11).mp4  M5 R+ E2 B4 x8 V" B5 E9 ]

  7 – 4 – Interpreting VC Dimension (17-13).mp4* e. a% x+ l# y* R/ w7 h& P- V

  8 – 1 – Noise and Probabilistic Target (17-01).mp4

  8 – 2 – Error Measure (15-10).mp4$ F: |  |' @! O, u9 g: E7 d1 f

  8 – 3 – Algorithmic Error Measure (13-46).mp4– e# E" Y5 [5 Z& p+ w8 T

  8 – 4 – Weighted Classification (16-54).mp40 f0 r* ~3 O, r. ]% J% ~7 `- |

  9 – 1 – Linear Regression Problem (10-08).mp4

  9 – 2 – Linear Regression Algorithm (20-03).mp4

  9 – 3 – Generalization Issue (20-34).mp4+ c) V9 V. A! A. f' N

  9 – 4 – Linear Regression for Binary Classification (11-23).mp4

  HomeWork1.doc

  homework2.docx

  homework3.docx

分享到:
標簽:人工智能 基石 機器 人工智能
用戶無頭像

網友整理

注冊時間:

網站:5 個   小程序:0 個  文章:12 篇

  • 51998

    網站

  • 12

    小程序

  • 1030137

    文章

  • 747

    會員

趕快注冊賬號,推廣您的網站吧!
最新入駐小程序

數獨大挑戰2018-06-03

數獨一種數學游戲,玩家需要根據9

答題星2018-06-03

您可以通過答題星輕松地創建試卷

全階人生考試2018-06-03

各種考試題,題庫,初中,高中,大學四六

運動步數有氧達人2018-06-03

記錄運動步數,積累氧氣值。還可偷

每日養生app2018-06-03

每日養生,天天健康

體育訓練成績評定2018-06-03

通用課目體育訓練成績評定