本文主要針對的是關系型數據數據庫 MySQL。
先簡單梳理下 Mysql 的基本概念,然后分創建時和查詢時這兩個階段的優化展開。
1 基本概念簡述
1.1 邏輯架構
- 第一層:客戶端通過連接服務,將要執行的 sql 指令傳輸過來
- 第二層:服務器解析并優化 sql,生成最終的執行計劃并執行
- 第三層:存儲引擎,負責數據的儲存和提取
1.2 鎖
數據庫通過鎖機制來解決并發場景 - 共享鎖(讀鎖)和排他鎖(寫鎖)。讀鎖是不阻塞的,多個客戶端可以在同一時刻讀取同一個資源。寫鎖是排他的,并且會阻塞其他的讀鎖和寫鎖。簡單提下樂觀鎖和悲觀鎖。
- 樂觀鎖,通常用于數據競爭不激烈的場景,多讀少寫,通過版本號和時間戳實現。
- 悲觀鎖,通常用于數據競爭激烈的場景,每次操作都會鎖定數據。
要鎖定數據需要一定的鎖策略來配合。
- 表鎖,鎖定整張表,開銷最小,但是會加劇鎖競爭。
- 行鎖,鎖定行級別,開銷最大,但是可以最大程度的支持并發。
但是 MySql 的存儲引擎的真實實現不是簡單的行級鎖,一般都是實現了多版本并發控制(MVCC)。MVCC 是行級鎖的變種,多數情況下避免了加鎖操作,開銷更低。MVCC 是通過保存數據的某個時間點快照實現的。
1.3 事務
事務保證一組原子性的操作,要么全部成功,要么全部失敗。一旦失敗,回滾之前的所有操作。MySql 采用自動提交,如果不是顯式的開啟一個事務,則每個查詢都作為一個事務。
隔離級別控制了一個事務中的修改,哪些在事務內和事務間是可見的。四種常見的隔離級別:
- 未提交讀(Read UnCommitted),事務中的修改,即使沒提交對其他事務也是可見的。事務可能讀取未提交的數據,造成臟讀。
- 提交讀(Read Committed),一個事務開始時,只能看見已提交的事務所做的修改。事務未提交之前,所做的修改對其他事務是不可見的。也叫不可重復讀,同一個事務多次讀取同樣記錄可能不同。
- 可重復讀(RepeatTable Read),同一個事務中多次讀取同樣的記錄結果時結果相同。
- 可串行化(Serializable),最高隔離級別,強制事務串行執行。
1.4 存儲引擎
InnoDB 引擎,最重要,使用最廣泛的存儲引擎。被用來設計處理大量短期事務,具有高性能和自動崩潰恢復的特性。
MyISAM 引擎,不支持事務和行級鎖,崩潰后無法安全恢復。
2 創建時優化
2.1 Schema 和數據類型優化
整數
TinyInt,SmallInt,MediumInt,Int,BigInt 使用的存儲 8,16,24,32,64 位存儲空間。使用 Unsigned 表示不允許負數,可以使正數的上線提高一倍。
實數
- Float,Double , 支持近似的浮點運算。
- Decimal,用于存儲精確的小數。
字符串
- VarChar,存儲變長的字符串。需要 1 或 2 個額外的字節記錄字符串的長度。
- Char,定長,適合存儲固定長度的字符串,如 MD5 值。
- Blob,Text 為了存儲很大的數據而設計的。分別采用二進制和字符的方式。
時間類型
- DateTime,保存大范圍的值,占 8 個字節。
- TimeStamp,推薦,與 UNIX 時間戳相同,占 4 個字節。
優化建議點
- 盡量使用對應的數據類型。比如,不要用字符串類型保存時間,用整型保存 IP。
- 選擇更小的數據類型。能用 TinyInt 不用 Int。
- 標識列(identifier column),建議使用整型,不推薦字符串類型,占用更多空間,而且計算速度比整型慢。
- 不推薦 ORM 系統自動生成的 Schema,通常具有不注重數據類型,使用很大的 VarChar 類型,索引利用不合理等問題。
- 真實場景混用范式和反范式。冗余高查詢效率高,插入更新效率低;冗余低插入更新效率高,查詢效率低。
- 創建完全的獨立的匯總表 緩存表,定時生成數據,用于用戶耗時時間長的操作。對于精確度要求高的匯總操作,可以采用 歷史結果 + 最新記錄的結果 來達到快速查詢的目的。
- 數據遷移,表升級的過程中可以使用影子表的方式,通過修改原表的表名,達到保存歷史數據,同時不影響新表使用的目的。
2.2 索引
索引包含一個或多個列的值。MySql 只能高效的利用索引的最左前綴列。索引的優勢:
- 減少查詢掃描的數據量
- 避免排序和零時表
- 將隨機 IO 變為順序 IO (順序 IO 的效率高于隨機 IO)
B-Tree
使用最多的索引類型。采用 B-Tree 數據結構來存儲數據(每個葉子節點都包含指向下一個葉子節點的指針,從而方便葉子節點的遍歷)。B-Tree 索引適用于全鍵值,鍵值范圍,鍵前綴查找,支持排序。
B-Tree 索引限制:
- 如果不是按照索引的最左列開始查詢,則無法使用索引。
- 不能跳過索引中的列。如果使用第一列和第三列索引,則只能使用第一列索引。
- 如果查詢中有個范圍查詢,則其右邊的所有列都無法使用索引優化查詢。
哈希索引
只有精確匹配索引的所有列,查詢才有效。存儲引擎會對所有的索引列計算一個哈希碼,哈希索引將所有的哈希碼存儲在索引中,并保存指向每個數據行的指針。
哈希索引限制:
- 無法用于排序
- 不支持部分匹配
- 只支持等值查詢如 =,IN(),不支持 < >
優化建議點
- 注意每種索引的適用范圍和適用限制。
- 索引的列如果是表達式的一部分或者是函數的參數,則失效。
- 針對特別長的字符串,可以使用前綴索引,根據索引的選擇性選擇合適的前綴長度。
- 使用多列索引的時候,可以通過 AND 和 OR 語法連接。
- 重復索引沒必要,如(A,B)和(A)重復。
- 索引在 where 條件查詢和 group by 語法查詢的時候特別有效。
- 將范圍查詢放在條件查詢的最后,防止范圍查詢導致的右邊索引失效的問題。
- 索引最好不要選擇過長的字符串,而且索引列也不宜為 null。
3 查詢時優化
3.1 查詢質量的三個重要指標
- 響應時間 (服務時間,排隊時間)
- 掃描的行
- 返回的行
3.2 查詢優化點
- 避免查詢無關的列,如使用 Select * 返回所有的列。
- 避免查詢無關的行
- 切分查詢。將一個對服務器壓力較大的任務,分解到一個較長的時間中,并分多次執行。如要刪除一萬條數據,可以分 10 次執行,每次執行完成后暫停一段時間,再繼續執行。過程中可以釋放服務器資源給其他任務。
- 分解關聯查詢。將多表關聯查詢的一次查詢,分解成對單表的多次查詢。可以減少鎖競爭,查詢本身的查詢效率也比較高。因為 MySql 的連接和斷開都是輕量級的操作,不會由于查詢拆分為多次,造成效率問題。
- 注意 count 的操作只能統計不為 null 的列,所以統計總的行數使用 count(*)。
- group by 按照標識列分組效率高,分組結果不宜出行分組列之外的列。
- 關聯查詢延遲關聯,可以根據查詢條件先縮小各自要查詢的范圍,再關聯。
- Limit 分頁優化。可以根據索引覆蓋掃描,再根據索引列關聯自身查詢其他列。如
SELECT id, NAME, ageWHERE student s1INNER JOIN ( SELECT id FROM student ORDER BY age LIMIT 50,5) AS s2 ON s1.id = s2.id
- Union 查詢默認去重,如果不是業務必須,建議使用效率更高的 Union All
補充內容
來自大神 - 小寶
- 條件中的字段類型和表結構類型不一致,mysql 會自動加轉換函數,導致索引作為函數中的參數失效。
2.like 查詢前面部分未輸入,以 % 開頭無法命中索引。
- 補充 2 個 5.7 版本的新特性:
generated column,就是數據庫中這一列由其他列計算而得
CREATE TABLE triangle (sidea DOUBLE, sideb DOUBLE, area DOUBLE AS (sidea * sideb / 2));insert into triangle(sidea, sideb) values(3, 4);select * from triangle;
+-------+-------+------+| sidea | sideb | area |+-------+-------+------+| 3 | 4 | 6 |+-------+-------+------+
支持 JSON 格式數據,并提供相關內置函數
CREATE TABLE json_test (name JSON);INSERT INTO json_test VALUES('{"name1": "value1", "name2": "value2"}');SELECT * FROM json_test WHERE JSON_CONTAINS(name, '$.name1');
來自 JVM 專家 - 達
關注 explain 在性能分析中的使用
EXPLAIN SELECT settleId FROM Settle WHERE settleId = "3679"
- select_type,有幾種值:simple(表示簡單的 select,沒有 union 和子查詢),primary(有子查詢,最外面的 select 查詢就是 primary),union(union 中的第二個或隨后的 select 查詢,不依賴外部查詢結果),dependent union(union 中的第二個或隨后的 select 查詢,依賴外部查詢結果)
- type,有幾種值:system(表僅有一行(= 系統表),這是 const 連接類型的一個特例),const(常量查詢), ref(非唯一索引訪問,只有普通索引),eq_ref(使用唯一索引或組件查詢),all(全表查詢),index(根據索引查詢全表),range(范圍查詢)
- possible_keys: 表中可能幫助查詢的索引
- key,選擇使用的索引
- key_len,使用的索引長度
- rows,掃描的行數,越大越不好
- extra,有幾種值:Only index(信息從索引中檢索出,比掃描表快),where used(使用 where 限制),Using filesort (可能在內存或磁盤排序),Using temporary(對查詢結果排序時使用臨時表)