一、公式拆解
所謂公式拆解法就是針對某個指標,用公式層層分解該指標的影響因素。舉例:分析某產品的銷售額較低的原因,用公式法分解
二、對比分析
對比法就是用兩組或兩組以上的數據進行比較,是最通用的方法。
我們知道孤立的數據沒有意義,有對比才有差異。比如在時間維度上的同比和環比、增長率、定基比,與競爭對手的對比、類別之間的對比、特征和屬性對比等。對比法可以發現數據變化規律,使用頻繁,經常和其他方法搭配使用。
下圖的AB公司銷售額對比,雖然A公司銷售額總體上漲且高于B公司,但是B公司的增速迅猛,高于A公司,即使后期增速下降了,最后的銷售額還是趕超。
三、A/Btest
A/Btest,是將Web或App界面或流程的兩個或多個版本,在同一時間維度,分別讓類似訪客群組來訪問,收集各群組的用戶體驗數據和業務數據,最后分析評估出最好版本正式采用。A/Btest的流程如下:
(1)現狀分析并建立假設:分析業務數據,確定當前最關鍵的改進點,作出優化改進的假設,提出優化建議;比如說我們發現用戶的轉化率不高,我們假設是因為推廣的著陸頁面帶來的轉化率太低,下面就要想辦法來進行改進了
(2)設定目標,制定方案:設置主要目標,用來衡量各優化版本的優劣;設置輔助目標,用來評估優化版本對其他方面的影響。
(3)設計與開發:制作2個或多個優化版本的設計原型并完成技術實現。
(4)分配流量:確定每個線上測試版本的分流比例,初始階段,優化方案的流量設置可以較小,根據情況逐漸增加流量。
(5)采集并分析數據:收集實驗數據,進行有效性和效果判斷:統計顯著性達到95%或以上并且維持一段時間,實驗可以結束;如果在95%以下,則可能需要延長測試時間;如果很長時間統計顯著性不能達到95%甚至90%,則需要決定是否中止試驗。
(6)最后:根據試驗結果確定發布新版本、調整分流比例繼續測試或者在試驗效果未達成的情況下繼續優化迭代方案重新開發上線試驗。流程圖如下:
四、象限分析
通過對兩種及以上維度的劃分,運用坐標的方式表達出想要的價值。由價值直接轉變為策略,從而進行一些落地的推動。象限法是一種策略驅動的思維,常與產品分析、市場分析、客戶管理、商品管理等。比如,下圖是一個廣告點擊的四象限分布,X軸從左到右表示從低到高,Y軸從下到上表示從低到高。
高點擊率高轉化的廣告,說明人群相對精準,是一個高效率的廣告。高點擊率低轉化的廣告,說明點擊進來的人大多被廣告吸引了,轉化低說明廣告內容針對的人群和產品實際受眾有些不符。高轉化低點擊的廣告,說明廣告內容針對的人群和產品實際受眾符合程度較高,但需要優化廣告內容,吸引更多人點擊。低點擊率低轉化的廣告,可以放棄了。還有經典的RFM模型,把客戶按最近一次消費(Recency)、消費頻率(Frequency)、消費金額 (Monetary)三個維度分成八個象限。
象限法的優勢:
(1)找到問題的共性原因
通過象限分析法,將有相同特征的事件進行歸因分析,總結其中的共性原因。例如上面廣告的案例中,第一象限的事件可以提煉出有效的推廣渠道與推廣策略,第三和第四象限可以排除一些無效的推廣渠道;
(2)建立分組優化策略針對投放的象限分析法可以針對不同象限建立優化策略,例如RFM客戶管理模型中按照象限將客戶分為重點發展客戶、重點保持客戶、一般發展客戶、一般保持客戶等不同類型。給重點發展客戶傾斜更多的資源,比如VIP服務、個性化服務、附加銷售等。給潛力客戶銷售價值更高的產品,或一些優惠措施來吸引他們回歸。
五、帕累托分析
帕累托法則,源于經典的二八法則。比如在個人財富上可以說世界上20%的人掌握著80%的財富。而在數據分析中,則可以理解為20%的數據產生了80%的效果需要圍繞這20%的數據進行挖掘。往往在使用二八法則的時候和排名有關系,排在前20%的才算是有效數據。二八法是抓重點分析,適用于任何行業。找到重點,發現其特征,然后可以思考如何讓其余的80%向這20%轉化,提高效果。
一般地,會用在產品分類上,去測量并構建ABC模型。比如某零售企業有500個SKU以及這些SKU對應的銷售額,那么哪些SKU是重要的呢,這就是在業務運營中分清主次的問題。
常見的做法是將產品SKU作為維度,并將對應的銷售額作為基礎度量指標,將這些銷售額指標從大到小排列,并計算截止當前產品SKU的銷售額累計合計占總銷售額的百分比。
百分比在 70%(含)以內,劃分為 A 類。百分比在 70~90%(含)以內,劃分為 B 類。百分比在 90~100%(含)以內,劃分為 C 類。以上百分比也可以根據自己的實際情況調整。
ABC分析模型,不光可以用來劃分產品和銷售額,還可以劃分客戶及客戶交易額等。比如給企業貢獻80%利潤的客戶是哪些,占比多少。假設有20%,那么在資源有限的情況下,就知道要重點維護這20%類客戶。
六、漏斗分析
漏斗法即是漏斗圖,有點像倒金字塔,是一個流程化的思考方式,常用于像新用戶的開發、購物轉化率這些有變化和一定流程的分析中。
上圖是經典的營銷漏斗,形象展示了從獲取用戶到最終轉化成購買這整個流程中的一個個子環節。相鄰環節的轉化率則就是指用數據指標來量化每一個步驟的表現。所以整個漏斗模型就是先將整個購買流程拆分成一個個步驟,然后用轉化率來衡量每一個步驟的表現,最后通過異常的數據指標找出有問題的環節,從而解決問題,優化該步驟,最終達到提升整體購買轉化率的目的。
整體漏斗模型的核心思想其實可以歸為分解和量化。比如分析電商的轉化,我們要做的就是監控每個層級上的用戶轉化,尋找每個層級的可優化點。對于沒有按照流程操作的用戶,專門繪制他們的轉化模型,縮短路徑提升用戶體驗。
還有經典的黑客增長模型,AARRR模型,指Acquisition、Activation、Retention、Revenue、Referral,即用戶獲取、用戶激活、用戶留存、用戶收益以及用戶傳播。這是產品運營中比較常見的一個模型,結合產品本身的特點以及產品的生命周期位置,來關注不同的數據指標,最終制定不同的運營策略。
從下面這幅AARRR模型圖中,能夠比較明顯的看出來整個用戶的生命周期是呈現逐漸遞減趨勢的。通過拆解和量化整個用戶生命周期各環節,可以進行數據的橫向和縱向對比,從而發現對應的問題,最終進行不斷的優化迭代。
七、路徑分析
用戶路徑分析追蹤用戶從某個開始事件直到結束事件的行為路徑,即對用戶流向進行監測,可以用來衡量網站優化的效果或營銷推廣的效果,以及了解用戶行為偏好,其最終目的是達成業務目標,引導用戶更高效地完成產品的最優路徑,最終促使用戶付費。如何進行用戶行為路徑分析?
(1)計算用戶使用網站或APP時的每個第一步,然后依次計算每一步的流向和轉化,通過數據,真實地再現用戶從打開APP到離開的整個過程。
(2)查看用戶在使用產品時的路徑分布情況。例如:在訪問了某個電商產品首頁的用戶后,有多大比例的用戶進行了搜索,有多大比例的用戶訪問了分類頁,有多大比例的用戶直接訪問的商品詳情頁。
(3)進行路徑優化分析。例如:哪條路徑是用戶最多訪問的;走到哪一步時,用戶最容易流失。
(4)通過路徑識別用戶行為特征。例如:分析用戶是用完即走的目標導向型,還是無目的瀏覽型。
(5)對用戶進行細分。通常按照APP的使用目的來對用戶進行分類。如汽車APP的用戶可以細分為關注型、意向型、購買型用戶,并對每類用戶進行不同訪問任務的路徑分析,比如意向型的用戶,他進行不同車型的比較都有哪些路徑,存在什么問題。還有一種方法是利用算法,基于用戶所有訪問路徑進行聚類分析,依據訪問路徑的相似性對用戶進行分類,再對每類用戶進行分析。
以電商為例,買家從登錄網站/APP到支付成功要經過首頁瀏覽、搜索商品、加入購物車、提交訂單、支付訂單等過程。而在用戶真實的選購過程是一個交纏反復的過程,例如提交訂單后,用戶可能會返回首頁繼續搜索商品,也可能去取消訂單,每一個路徑背后都有不同的動機。與其他分析模型配合進行深入分析后,能為找到快速用戶動機,從而引領用戶走向最優路徑或者期望中的路徑。用戶行為路徑圖示例:
八、留存分析
用戶留存指的是新會員/用戶在經過一定時間之后,仍然具有訪問、登錄、使用或轉化等特定屬性和行為,留存用戶占當時新用戶的比例就是留存率。留存率按照不同的周期分為三類,以登錄行為認定的留存為例:
第一種 日留存,日留存又可以細分為以下幾種:
(1)次日留存率:(當天新增的用戶中,第2天還登錄的用戶數)/第一天新增總用戶數
(2)第3日留存率:(第一天新增用戶中,第3天還有登錄的用戶數)/第一天新增總用戶數
(3)第7日留存率:(第一天新增用戶中,第7天還有登錄的用戶數)/第一天新增總用戶數
(4)第14日留存率:(第一天新增用戶中,第14天還有登錄的用戶數)/第一天新增總用戶數
(5)第30日留存率:(第一天新增用戶中,第30天還有登錄的用戶數)/第一天新增總用戶數
第二種 周留存,以周度為單位的留存率,指的是每個周相對于第一個周的新增用戶中,仍然還有登錄的用戶數。
第三種 月留存,以月度為單位的留存率,指的是每個月相對于第一個周的新增用戶中,仍然還有登錄的用戶數。留存率是針對新用戶的,其結果是一個矩陣式半面報告(只有一半有數據),每個數據記錄行是日期、列為對應的不同時間周期下的留存率。正常情況下,留存率會隨著時間周期的推移而逐漸降低。下面以月留存為例生成的月用戶留存曲線:
九、聚類分析
聚類分析屬于探索性的數據分析方法。通常,我們利用聚類分析將看似無序的對象進行分組、歸類,以達到更好地理解研究對象的目的。聚類結果要求組內對象相似性較高,組間對象相似性較低。在用戶研究中,很多問題可以借助聚類分析來解決,比如,網站的信息分類問題、網頁的點擊行為關聯性問題以及用戶分類問題等等。其中,用戶分類是最常見的情況。
常見的聚類方法有不少,比如K均值(K-Means),譜聚類(Spectral Clustering),層次聚類(Hierarchical Clustering)。以最為常見的K-means為例,如下圖:
可以看到,數據可以被分到紅藍綠三個不同的簇(cluster)中,每個簇應有其特有的性質。顯然,聚類分析是一種無監督學習,是在缺乏標簽的前提下的一種分類模型。當我們對數據進行聚類后并得到簇后,一般會單獨對每個簇進行深入分析,從而得到更加細致的結果
CIO之家-企業信息化知識平臺 作者:數據蟬 來源:簡書