背景
XX 實例(一主一從)xxx 告警中每天凌晨在報 SLA 報警,該報警的意思是存在一定的主從延遲。(若在此時發生主從切換,需要長時間才可以完成切換,要追延遲來保證主從數據的一致性)。
XX 實例的慢查詢數量最多(執行時間超過 1s 的 SQL 會被記錄),XX 應用那方每天晚上在做刪除一個月前數據的任務。
分析
使用 pt-query-digest 工具分析最近一周的 MySQL-slow.log:
pt-query-digest --since=148h mysql-slow.log | less
結果第一部分:
最近一個星期內,總共記錄的慢查詢執行花費時間為 25403s,最大的慢 SQL 執行時間為 266s,平均每個慢 SQL 執行時間 5s,平均掃描的行數為 1766 萬。面試寶典:https://www.yoodb.com
結果第二部分:
select arrival_record 操作記錄的慢查詢數量最多有 4 萬多次,平均響應時間為 4s,delete arrival_record 記錄了 6 次,平均響應時間 258s。
select xxx_record 語句
select arrival_record 慢查詢語句都類似于如下所示,where 語句中的參數字段是一樣的,傳入的參數值不一樣:
select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G
select arrival_record 語句在 MySQL 中最多掃描的行數為 5600 萬、平均掃描的行數為 172 萬,推斷由于掃描的行數多導致的執行時間長。
查看執行計劃:
explain select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: arrival_record
partitions: NULL
type: ref
possible_keys: IXFK_arrival_record
key: IXFK_arrival_record
key_len: 8
ref: const
rows: 32261320
filtered: 3.70
Extra: Using index condition; Using where
1 row in set, 1 warning (0.00 sec)
用到了索引 IXFK_arrival_record,但預計掃描的行數很多有 3000 多萬行:
show index from arrival_record;
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
| arrival_record | 0 | PRIMARY | 1 | id | A | 107990720 | NULL | NULL | | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 1 | product_id | A | 1344 | NULL | NULL | | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 2 | station_no | A | 22161 | NULL | NULL | YES | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 3 | sequence | A | 77233384 | NULL | NULL | | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 4 | receive_time | A | 65854652 | NULL | NULL | YES | BTREE | | |
| arrival_record | 1 | IXFK_arrival_record | 5 | arrival_time | A | 73861904 | NULL | NULL | YES | BTREE | | |
show create table arrival_record;
arrival_spend_ms bigint(20) DEFAULT NULL,
total_spend_ms bigint(20) DEFAULT NULL,
PRIMARY KEY (id),
KEY IXFK_arrival_record (product_id,station_no,sequence,receive_time,arrival_time) USING BTREE,
CONSTRAINT FK_arrival_record_product FOREIGN KEY (product_id) REFERENCES product (id) ON DELETE NO ACTION ON UPDATE NO ACTION
) ENGINE=InnoDB AUTO_INCREMENT=614538979 DEFAULT CHARSET=utf8 COLLATE=utf8_bin |
①該表總記錄數約 1 億多條,表上只有一個復合索引,product_id 字段基數很小,選擇性不好。
②傳入的過濾條件:
where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0
沒有 station_nu 字段,使用不到復合索引 IXFK_arrival_record 的 product_id,station_no,sequence,receive_time 這幾個字段。JAVA新特性:https://www.yoodb.com/java/characteristic/java-8/java8-stream.html
③根據最左前綴原則,select arrival_record 只用到了復合索引 IXFK_arrival_record 的第一個字段 product_id,而該字段選擇性很差,導致掃描的行數很多,執行時間長。
④receive_time 字段的基數大,選擇性好,可對該字段單獨建立索引,select arrival_record sql 就會使用到該索引。
現在已經知道了在慢查詢中記錄的 select arrival_record where 語句傳入的參數字段有 product_id,receive_time,receive_spend_ms,還想知道對該表的訪問有沒有通過其他字段來過濾了
神器 tcpdump 出場的時候到了,使用 tcpdump 抓包一段時間對該表的 select 語句:
tcpdump -i bond0 -s 0 -l -w - dst port 3316 | strings | grep select | egrep -i 'arrival_record' >/tmp/select_arri.log
獲取 select 語句中 from 后面的 where 條件語句:
IFS_OLD=$IFS
IFS=$'n'
for i in `cat /tmp/select_arri.log `;do echo ${i#*'from'}; done | less
IFS=$IFS_OLD
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=17 and arrivalrec0_.station_no='56742'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='S7100'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='V4631'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='S9466'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='V4205'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='V4105'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='V4506'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=24 and arrivalrec0_.station_no='V4617'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='S8356'
arrival_record arrivalrec0_ where arrivalrec0_.sequence='2019-03-27 08:40' and arrivalrec0_.product_id=22 and arrivalrec0_.station_no='S8356'
select 該表 where 條件中有 product_id,station_no,sequence 字段,可以使用到復合索引 IXFK_arrival_record 的前三個字段。
綜上所示,優化方法為:
-
刪除復合索引 IXFK_arrival_record
-
建立復合索引 idx_sequence_station_no_product_id
-
建立單獨索引 indx_receive_time
delete xxx_record 語句
該 delete 操作平均掃描行數為 1.1 億行,平均執行時間是 262s。
delete 語句如下所示,每次記錄的慢查詢傳入的參數值不一樣:
delete from arrival_record where receive_time < STR_TO_DATE('2019-02-23', '%Y-%m-%d')G
執行計劃:
explain select * from arrival_record where receive_time < STR_TO_DATE('2019-02-23', '%Y-%m-%d')G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: arrival_record
partitions: NULL
type: ALL
possible_keys: NULL
key: NULL
key_len: NULL
ref: NULL
rows: 109501508
filtered: 33.33
Extra: Using where
1 row in set, 1 warning (0.00 sec)
該 delete 語句沒有使用索引(沒有合適的索引可用),走的全表掃描,導致執行時間長。
優化方法也是:建立單獨索引 indx_receive_time(receive_time)。
測試
拷貝 arrival_record 表到測試實例上進行刪除重新索引操作。
XX 實例 arrival_record 表信息:
du -sh /datas/mysql/data/3316/cq_new_cimiss/arrival_record*
12K /datas/mysql/data/3316/cq_new_cimiss/arrival_record.frm
48G /datas/mysql/data/3316/cq_new_cimiss/arrival_record.ibd
select count() from cq_new_cimiss.arrival_record;
| count() |
| 112294946 |
1億多記錄數
SELECT
table_name,
CONCAT(FORMAT(SUM(data_length) / 1024 / 1024,2),'M') AS dbdata_size,
CONCAT(FORMAT(SUM(index_length) / 1024 / 1024,2),'M') AS dbindex_size,
CONCAT(FORMAT(SUM(data_length + index_length) / 1024 / 1024 / 1024,2),'G') AS table_size(G),
AVG_ROW_LENGTH,table_rows,update_time
FROM
information_schema.tables
WHERE table_schema = 'cq_new_cimiss' and table_name='arrival_record';
| table_name | dbdata_size | dbindex_size | table_size(G) | AVG_ROW_LENGTH | table_rows | update_time |
| arrival_record | 18,268.02M | 13,868.05M | 31.38G | 175 | 109155053 | 2019-03-26 12:40:17 |
磁盤占用空間 48G,MySQL 中該表大小為 31G,存在 17G 左右的碎片,大多由于刪除操作造成的。(記錄被刪除了,空間沒有回收)
備份還原該表到新的實例中,刪除原來的復合索引,重新添加索引進行測試。
mydumper 并行壓縮備份:
user=root
passwd=xxxx
socket=/datas/mysql/data/3316/mysqld.sock
db=cq_new_cimiss
table_name=arrival_record
backupdir=/datas/dump_$table_name
mkdir -p $backupdir
nohup echo `date +%T` && mydumper -u $user -p $passwd -S $socket -B $db -c -T $table_name -o $backupdir -t 32 -r 2000000 && echo `date +%T` &
并行壓縮備份所花時間(52s)和占用空間(1.2G,實際該表占用磁盤空間為 48G,mydumper 并行壓縮備份壓縮比相當高):
Started dump at: 2019-03-26 12:46:04
Finished dump at: 2019-03-26 12:46:56
du -sh /datas/dump_arrival_record/
1.2G /datas/dump_arrival_record/
拷貝 dump 數據到測試節點:
scp -rp /datas/dump_arrival_record root@10.230.124.19:/datas
多線程導入數據:
time myloader -u root -S /datas/mysql/data/3308/mysqld.sock -P 3308 -p root -B test -d /datas/dump_arrival_record -t 32
real 126m42.885s
user 1m4.543s
sys 0m4.267s
邏輯導入該表后磁盤占用空間:
du -h -d 1 /datas/mysql/data/3308/test/arrival_record.*
12K /datas/mysql/data/3308/test/arrival_record.frm
30G /datas/mysql/data/3308/test/arrival_record.ibd
沒有碎片,和mysql的該表的大小一致
cp -rp /datas/mysql/data/3308 /datas
分別使用 online DDL 和 pt-osc 工具來做刪除重建索引操作。Spring注解大全:https://www.yoodb.com/spring/spring-annotate.html
先刪除外鍵,不刪除外鍵,無法刪除復合索引,外鍵列屬于復合索引中第一列:
nohup bash /tmp/ddl_index.sh &
2019-04-04-10:41:39 begin stop mysqld_3308
2019-04-04-10:41:41 begin rm -rf datadir and cp -rp datadir_bak
2019-04-04-10:46:53 start mysqld_3308
2019-04-04-10:46:59 online ddl begin
2019-04-04-11:20:34 onlie ddl stop
2019-04-04-11:20:34 begin stop mysqld_3308
2019-04-04-11:20:36 begin rm -rf datadir and cp -rp datadir_bak
2019-04-04-11:22:48 start mysqld_3308
2019-04-04-11:22:53 pt-osc begin
2019-04-04-12:19:15 pt-osc stop
online DDL 花費時間為 34 分鐘,pt-osc 花費時間為 57 分鐘,使用 onlne DDL 時間約為 pt-osc 工具時間的一半。
做 DDL 參考:
實施
由于是一主一從實例,應用是連接的 vip,刪除重建索引采用 online DDL 來做。公眾 號Java精選,回復java面試,獲取面試資料,支持在線刷題。
停止主從復制后,先在從實例上做(不記錄 binlog),主從切換,再在新切換的從實例上做(不記錄 binlog):
function red_echo () {
local what="$*"
echo -e "$(date +%F-%T) ${what}"
function check_las_comm(){
if [ "$1" != "0" ];then
red_echo "$2"
echo "exit 1"
exit 1
fi
red_echo "stop slave"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"stop slave"
check_las_comm "$?" "stop slave failed"
red_echo "online ddl begin"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"set sql_log_bin=0;select now() as ddl_start;ALTER TABLE $db_.`${table_name}` DROP FOREIGN KEY FK_arrival_record_product,drop index IXFK_arrival_record,add index idx_product_id_sequence_station_no(product_id,sequence,station_no),add index idx_receive_time(receive_time);select now() as ddl_stop" >>${log_file} 2>& 1
red_echo "onlie ddl stop"
red_echo "add foreign key"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"set sql_log_bin=0;ALTER TABLE $db_.${table_name} ADD CONSTRAINT _FK_${table_name}_product FOREIGN KEY (product_id) REFERENCES cq_new_cimiss.product (id) ON DELETE NO ACTION ON UPDATE NO ACTION;" >>${log_file} 2>& 1
check_las_comm "$?" "add foreign key error"
red_echo "add foreign key stop"
red_echo "start slave"
mysql -uroot -p$passwd --socket=/datas/mysql/data/${port}/mysqld.sock -e"start slave"
check_las_comm "$?" "start slave failed"
執行時間:
2019-04-08-11:17:36 stop slave
mysql: [Warning] Using a password on the command line interface can be insecure.
ddl_start
2019-04-08 11:17:36
ddl_stop
2019-04-08 11:45:13
2019-04-08-11:45:13 onlie ddl stop
2019-04-08-11:45:13 add foreign key
mysql: [Warning] Using a password on the command line interface can be insecure.
2019-04-08-12:33:48 add foreign key stop
2019-04-08-12:33:48 start slave
刪除重建索引花費時間為 28 分鐘,添加外鍵約束時間為 48 分鐘。
再次查看 delete 和 select 語句的執行計劃:
explain select count(*) from arrival_record where receive_time < STR_TO_DATE('2019-03-10', '%Y-%m-%d')G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: arrival_record
partitions: NULL
type: range
possible_keys: idx_receive_time
key: idx_receive_time
key_len: 6
ref: NULL
rows: 7540948
filtered: 100.00
Extra: Using where; Using index
explain select count(*) from arrival_record where product_id=26 and receive_time between '2019-03-25 14:00:00' and '2019-03-25 15:00:00' and receive_spend_ms>=0G;
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: arrival_record
partitions: NULL
type: range
possible_keys: idx_product_id_sequence_station_no,idx_receive_time
key: idx_receive_time
key_len: 6
ref: NULL
rows: 291448
filtered: 16.66
Extra: Using index condition; Using where
都使用到了 idx_receive_time 索引,掃描的行數大大降低。
索引優化后
delete 還是花費了 77s 時間:
delete from arrival_record where receive_time < STR_TO_DATE('2019-03-10', '%Y-%m-%d')G
delete 語句通過 receive_time 的索引刪除 300 多萬的記錄花費 77s 時間。
delete 大表優化為小批量刪除
應用端已優化成每次刪除 10 分鐘的數據(每次執行時間 1s 左右),xxx 中沒在出現 SLA(主從延遲告警):
另一個方法是通過主鍵的順序每次刪除 20000 條記錄:
#得到滿足時間條件的最大主鍵ID
#通過按照主鍵的順序去 順序掃描小批量刪除數據
#先執行一次以下語句
SELECT MAX(id) INTO @need_delete_max_id FROM `arrival_record` WHERE receive_time<'2019-03-01' ;
DELETE FROM arrival_record WHERE id<@need_delete_max_id LIMIT 20000;
select ROW_COUNT(); #返回20000
#執行小批量delete后會返回row_count(), 刪除的行數
#程序判斷返回的row_count()是否為0,不為0執行以下循環,為0退出循環,刪除操作完成
DELETE FROM arrival_record WHERE id<@need_delete_max_id LIMIT 20000;
select ROW_COUNT();
#程序睡眠0.5s
總結
表數據量太大時,除了關注訪問該表的響應時間外,還要關注對該表的維護成本(如做 DDL 表更時間太長,delete 歷史數據)。
對大表進行 DDL 操作時,要考慮表的實際情況(如對該表的并發表,是否有外鍵)來選擇合適的 DDL 變更方式。
對大數據量表進行 delete,用小批量刪除的方式,減少對主實例的壓力和主從延遲。
作者:jiaxin_12 https://www.cnblogs.com/YangJiaXin/p/10828244.html