Pillow模塊講解
一、Image模塊
1.1 、打開圖片和顯示圖片
就圖片的處理最基礎的操作就是打開這張圖片,我們可以使用Image模塊中的open(fp, mode)方法,來打開圖片。open方法接收兩個參數,第一個是文件路徑,第二個是模式。主要的模式如下:
光理論是不夠的,在此送大家一套2020最新Python全棧項目視頻教程,點擊此處 進來獲取 跟著練習下,希望大家一起進步哦!
更多的模式也就不說了,關于模式的模式的詳細介紹我也不知道。這個open方法返回一個Image就象,mode也不是必須參數。打開圖片代碼如下:
from PIL import Image
# 打開圖片
im = Image.open('test.jpg')
# 顯示圖片
im.show()
1
當然顯示圖片不是我們的重點,我們獲取Image對象之后,就可以獲取它的一些信息了。
print('圖像的格式:', im.format)
print('圖像的大?。?#39;, im.size)
print('圖像的寬度:', im.width)
print('圖像的高度:', im.height)
# 傳入坐標的元組
print('獲取某個像素點的顏色值:', im.getpixel(100, 100))
1
在我的環境中運行結果如下:
圖像的格式: JPEG
圖像的大?。?(3968, 2976)
圖像的寬度: 3968
圖像的高度: 2976
獲取某個像素點的顏色值: (198, 180, 132)
1
1.2、創建一個簡單的圖像
在Image模塊中,提供了創建圖像的方法。主要是通過**Image.new(mode, size, color)**實現,該方法傳入三個參數:
mode:圖像的創建模式
size:圖像的大小
color:圖像的顏色
用該方法可以創建一個簡單的圖像,之后我們可以通過save方法將圖像保存:
from PIL import Image
# 創建一個簡單的圖像
im = Image.new('RGB', (100, 100), 'red')
# 保存這個圖像
im.save('red.png')
1
生成圖片如下:
1.3、圖像混合
(1)透明度混合
透明度混合主要是使用**Image中的blend(im1, im2, alpha)**方法,對該方法的解釋如下:
im1:Image對象,在混合的過程中,透明度設置為(1-apha)
im2:Image對象,在混合的過程中,透明度設置為(apha)
alpha:透明度,取值是0-1。當透明度為0時,顯示im1對象;當透明度為1時,顯示im2對象
注意:im1和im2的大小必須一樣,且mode都為RGB
代碼實現如下:
from PIL import Image
# 打開im1
im1 = Image.open('pic.jpg').convert(mode='RGB')
# 創建一個和im1大小一樣的圖像
im2 = Image.new('RGB', im1.size, 'red')
# 混合圖片,并顯示
Image.blend(im1, im2, 0.5).show()
1
下面為原圖和混合圖的對比:
不得不說,我家艾斯真滴帥。
(2)遮罩混合
接下來就是很迷的時刻了,我們可以通過Image.composite(im1, im2, mask)方法實現遮罩混合。三個參數都是Image對象,該方法的作用就是使用mask來混合im1和im2。我是聽不懂,你們能聽懂最好給我講一下。具體實現如下:
# 這句代碼寫了好多遍,我真不想寫了
from PIL import Image
# 打開圖像1
im1 = Image.open('pic1.jpg')
# 打開圖像2
im2 = Image.open('pic2.jpg')
# 重新設置im2的大小
im2.resize(im1.size)
# 將圖像2的三個色道分離,其中r、g、b都為Image對象
r, g, b = im2.split()
# 遮罩混合
Image.composite(im1, im2, b).show()
1
2
注意:im1、im2和mask的大小必須一樣
im1、im2和遮罩混合效果對比如下:
依舊是我帥氣的艾斯。
1.4、圖像縮放
(1)按像素縮放
按像素縮放通過Image.eval(im1, fun)方法實現,其中im1為我們老生常談的Image對象了;第二個為一個方法(函數),該函數傳入一個參數,即像素點。該函數會對圖片中每個像素點進行函數內的操作。下面我們就來簡單使用一下這個方法:
from PIL import Image
# 打開一張圖像
im = Image.open('摳鼻屎.jpg')
# 對該圖像每個像素點進行*2處理
Image.eval(im, lambda x:x*2).show()
1
這里我使用的lambda表達式,當然一般也都是用lambda表達式,不過你也可以像下面這樣寫:
# 定義一個方法
def func(x):
return x*2
# 對圖像im每個像素點進行func中的操作,其中func不能加()
Image.eval(im, func)
1
效果圖如下:
細心的讀者應該可以發現,這個摳鼻屎的圖片和筆者頭像并不完全一樣。在血色方面,筆者的頭像確實要差幾分。
注意:筆者在日常生活中可不是天天在大街上摳鼻屎的那種。
(2)按尺寸縮放
按尺寸縮放是通過Image對象的thumbnail()方法實現的,這里不同于前面直接通過Image調用方法,而是使用Image的具體實例im2調用thumbnail方法,從而對im2直接進行處理。具體代碼如下:
from PIL import Image
# 打開圖像
im1 = Image.open('xx.jpg')
# 復制圖像
im2 = im1.copy()
# 將復制后的圖像進行縮放,傳入一個元組
im2.thumbnail((100, 100))
# 輸出圖像大小
print("im1的大小", im1.size)
print('im2的大小', im2.size)
1
這里縮放圖像并不會對圖像進行變形,即顯示效果是一樣的。這里就不放效果圖了,輸入結果如下:
im1的大小 (960, 960)
im2的大小 (100, 100)
1
1.5、圖像的剪切與粘貼
(1)圖像粘貼
粘貼的實現主要是通過Image對象的paste(im, box, mask)方法,其中im為Image對象;box為要粘貼到的區域;mask為遮罩(我也不知道啥是遮罩)。其中box的參數有三種形式:
(x1, y1):將im左上角對齊(x1,y1)點,其余部分粘貼,超出部分拋棄
(x1, x2, y1, y2):將im粘貼至此區域
None:此時im必須與源圖像大小一致
(2)裁剪圖像
裁剪主要通過Image對象的crop(box)方法實現,box同粘貼中一致。
接下來我們做一個小練習,想將圖像某個區域剪切下來,然后粘貼到另一個圖像上:
from PIL import Image
# 打開圖像
im = Image.open('nnz.jpg')
# 復制兩份
im1 = im.copy()
im2 = im.copy()
# 剪切圖片
im_crop = im1.crop((200, 200, 400, 400))
# 粘貼圖片
im2.paste(im_crop, (30, 30))
im2.show()
1
原圖和效果圖對比如下:
貌美如花的娜娜的。
1.4、圖像旋轉和格式轉換
(1)圖像旋轉
圖像旋轉就非常簡單了,簡單的一句代碼,通過Image對象調用rotate(),該方法返回被旋轉圖像的一個副本:
from PIL import Image
im = Image.open('nnz.jpg')
# 旋轉90度然后顯示
im.rotate(90).show()
1
順時針逆時針就不要問我了。
(2)格式轉換
convert:轉換圖像的模式
transpose:轉換圖像的格式
convert之前已經使用過了,這里就簡單演示一下transpose的作用,transpose主要傳入一些Image中的常量:
from PIL import Image
# 打開圖像
im = Image.open('nnz.jpg')
# 這里我也不知道注釋啥了,總之效果和rotate(90)效果一樣
im.transpose(Image.ROTATE_90).show()
1
效果圖我也就不放了,給大家列出一些可以傳入的常量和該常量的作用:
我也不知道這是哪門子的格式轉換。
1.5、分離和合并
(1)分離
這個是之前使用過的,通過Image對象的split()方法,將圖像的RGB三個通道分離,并返回三個Image對象:
from PIL import Image
# 打開圖像
im = Image.open('nnz.jpg')
# 分離通道,返回3個Image對象
r, g, b = im.split()
1
三個通道的效果圖如下:
(2)合并
合并是通過Image.merge(mode, bands)方法實現的,其中mode為模式,bands為通道列表,傳入一個列表類型數據。下面我實現以下小新多年來的愿望:
from PIL import Image
# 打開小新.jpg和娜娜的.jpg
im1 = Image.open('娜娜子.jpg')
im2 = Image.open('小新.jpg')
# 讓im2大小和im1一樣
im2.resize(im1.size)
# 將兩個圖像分別分離
r1, g1, b1 = im1.split()
r2, g2, b2 = im2.split()
# 合并圖像
im3 = Image.merge('RGB', [r1, g2, b1])
im3.show()
1
2
效果圖如下,看到這么美的圖片,小新一定會感謝我的:
到這里,我們就把Image模塊的大致內容講解完了,接下來我們來了解PIL中更豐富的功能。
二、ImageFilter
ImageFilter中提供了很多常用的濾鏡功能,
2.1、高斯模糊
高斯模糊也叫高斯平滑,是啥我也不知道,反正聽名字就是模糊。我們結合上面的內容完成一個小案例:
from PIL import Image, ImageFilter
# 打開圖像
im1 = Image.open('iron_man.jpg')
# 創建一個im1兩倍寬的圖像
img = Image.new('RGB', (im1.width*2, im1.height), 'red')
# 高斯模糊處理
im2 = im1.filter(ImageFilter.GaussianBlur)
# 將im1粘貼到img上
img.paste(im1, (0, 0))
# 將im2(高斯模糊后的圖像)粘貼到img上
img.paste(im2, (im1.width, 0))
img.show()
1
2
為了考慮小新的感受,下面不再用娜娜子作為素材。我選取了一張鋼鐵俠的圖片,運行結果如下:
希望各位讀者不要誤會,他倆真沒說你帥,他倆只說筆者一個人帥。
2.2、其它濾鏡
除了高斯模糊,ImageFilter中還提供了許多其它濾鏡:
筆者用一張美女圖片,測試了上面幾個濾鏡的效果,發現9張圖是看起來是完全一樣的。雖然完全一樣,但是筆者還是打算將這次測試的結果作為我慈善事業的一部分,分享給各位讀者。
其中1為高斯模糊,2-9分別為表格中的8個濾鏡。
三、ImageChops模塊(圖像合成)
ImageChops模塊中,提供了很多圖像合成的方法。這些方法是通過計算通道中像素值來實現的,不同的方法有不同的計算方式。
3.1、加法運算
加法運算通過**ImageChops.add(image1, image2, scale=1.0, offset=0)**方法實現,合成公式如下:
out = (im1 + im2)/scale + offset
1
我也看不懂,其中scale和offset是有默認值的。所以使用時我們可以省略參數,具體實現如下:
from PIL import Image, ImageChops
# 打開圖像
im1 = Image.open('im1.jpg')
im2 = Image.open('im2.jpg')
# 合成圖像并顯示
im3 = ImageChops.add(im1, im2)
im3.show()
1
實驗結果慘不忍睹,效果圖如下:
3.2、減法運算
加法運算通過**ImageChops.subtract(image1, image2, scale=1.0, offset=0)**方法實現,合成公式如下:
out = (im1 - im2)/scale + offset
1
其使用和add方法是一致的,代碼如下:
from PIL import Image, ImageChops
# 打開圖像
im1 = Image.open('xscn.jpg')
im2 = Image.open('xscn2.jpg')
# 合成圖像并顯示
im3 = ImageChops.subtract(im1, im2)
im3.show()
1
原本是不想放效果圖的,但是運行后,發現效果圖比較美,所以想和大家分享一下:
希望大家讀到這篇博客的時候是獨自一人的深夜。
3.3、其它函數
因為大多數函數的使用都比較簡單,所以后續的函數也不單獨拿出來講了,具體功效可以看下列表:
演示代碼如下:
from PIL import Image, ImageChops
# 打開圖像
im1 = Image.open("im1.jpg")
im2 = Image.open("im2.jpg")
# 對圖像進行各種操作
im3 = ImageChops.darker(im1, im2)
im3.save('darker.jpg')
im3 = ImageChops.lighter(im1, im2)
im3.save('lighter.jpg')
im3 = ImageChops.invert(im1)
im3.save('invert.jpg')
im3 = ImageChops.multiply(im1, im2)
im3.save('multiply.jpg')
im3 = ImageChops.screen(im1, im2)
im3.save('screen.jpg')
im3 = ImageChops.difference(im1, im2)
im3.save('difference.jpg')
1
其中,我選取的素材im1和im2都是上面使用到的那兩張,效果圖如下:
這樣,我的女神就被我毀的體無完膚了。
四、ImageEnhance模塊(色彩、亮度)
ImageEnhance提供了許多函數,用于調整圖像的色彩、對比度、亮度、清晰度等。調整圖像的步驟如下:
1,確定要調整的參數,獲取特定的調整器
2,調用調整器的enhance方法,傳入參數進行調整。
注意:所有調整器都實現同一個接口,該接口中包含一個方法enhance
其中enhance方法接收一個參數factor,factor是一個大于0的數。當factor為1時,返回原圖,當factor小于1返回減弱圖,大于1返回增強圖。
各個獲取色彩調整器的方法如下:
雖然是很想偷懶,不去做實驗,但是想想還是做了如下實驗,代碼如下:
from PIL import Image, ImageEnhance
# 打開im1
im1 = Image.open("gtx.jpg")
# 獲取顏色(各種)調整器
enhance_im1 = ImageEnhance.Color(im1)
#enhance_im1 = ImageEnhance.Contrast(im1)
#enhance_im1 = ImageEnhance.Brightness(im1)
#enhance_im1 = ImageEnhance.Sharpness(im1)
# 減弱顏色(以及其它屬性)
im2 = enhance_im1.enhance(0.5)
# 增強顏色(以及其它屬性)
im3 = enhance_im1.enhance(1.5)
# 獲取原圖大小
w, h = im1.size
# 創建一個原圖大小3倍的圖片
img = Image.new("RGB", (w*3, h))
# 將減弱的圖片放在最左邊
img.paste(im2, (0, 0))
# 將原圖放在中間
img.paste(im1, (w, 0))
# 將增強后的圖片放在最右邊
img.paste(im3, (w*2, 0))
# 顯示圖片
img.show()
1
其中,我們只需要修改獲取調整器的代碼就可以了,獲取其它調制器的代碼我注釋了。然后看看效果圖:
這種不傷大雅的工作,讓我唐尼叔做再適合不過了。
另外再講一個調節亮度的函數,但是這個函數是Image中的函數point(),而不是ImageEnhance的。該函數傳入一個參數,使用方法和Image.eval()類似,使用示例如下:
from PIL import Image
# 打開圖像
im1 = Image.open('gtx.jpg')
# 變暗操作
im2 = im1.point(lambda x:x*0.5)
# 變量操作
im3 = im1.point(lambda x:x*1.5)
# 獲取原圖大小
w, h = im1.size
# 創建一個原圖大小3倍的圖片
img = Image.new("RGB", (w*3, h))
# 將減弱的圖片放在最左邊
img.paste(im2, (0, 0))
# 將原圖放在中間
img.paste(im1, (w, 0))
# 將增強后的圖片放在最右邊
img.paste(im3, (w*2, 0))
# 顯示圖片
img.show()
1
2
效果圖如下:
五、ImageDraw模塊
該模塊提供了許多繪制2D圖像的功能,我們可以通過繪制獲取一個全新的圖像,也可以在原有的圖像上進行繪制。在我們使用該模塊進行繪制時,我們需要先獲取ImageDraw.Draw對象,獲取方式如下:
from PIL import ImageDraw
# 構造函數中,im為一個Image對象
drawer = ImageDraw.Draw(im)
1
我們獲取ImageDraw.Draw對象后就可以進行相應的繪制了。
5.1、繪制簡單形狀
在繪制之前,我們先創建一個空白的圖片:
from PIL import Image, ImageDraw
# 創建一個300*300的白色圖片
im = Image.new("RGB", (300, 300), "white")
# 獲取ImageDraw.Draw對象
drawer = ImageDraw.Draw(im)
1
后續的繪制都可以使用對象drawer繪制。
(1)繪制直線
"""
xy:起點坐標和終點坐標(x1, y1, x2, y2)
fill:填充色。"red"、"blue"...
width:輪廓粗細
joint:連接方式,可以是曲線
"""
line(xy, fill, width, joint)
# 繪制直線
drawer.line((50, 50, 150, 150), fill='green',width=2)
1
(2)繪制矩形
"""
xy:左上角坐標和右下角坐標(x1, y1, x2, y2)
fill:填充色。"red"、"blue"...
outline:輪廓色。同上
width:輪廓粗細
"""
rectangle(xy, fill, outline, width)
# 使用示例
drawer.rectangle((50, 50, 150, 150), fill='green', outline='red', width=3)
1
(3)繪制圓弧
"""
xy:包含圓弧所在圓的矩形的左上角坐標和右下角坐標(x1, y1, x2, y2)
start:起始角度
end:終止角度
fill:填充色。"red"、"blue"...
width:輪廓粗細
"""
arc(xy, start, end, fill, width)
# 使用示例
drawer.arc((50, 50, 150, 150), start=0, end=90, fill='green', width=3)
1
對于xy參數的解釋如圖所示:
(4)繪制橢圓
"""
xy:包含橢圓(或圓)的矩形的左上角坐標和右下角坐標(x1, y1, x2, y2)
fill:填充色。"red"、"blue"...
outline:輪廓顏色
width:輪廓粗細
"""
ellipse(xy, fill, outline, width)
# 使用示例
drawer.ellipse((50, 50, 150, 150),fill='green', outline='red', width=3)
1
2
(5)繪制弦
"""
xy:弦所在橢圓的矩形的左上角坐標和右下角坐標(x1, y1, x2, y2)
start:開始角度
end:終點角度
fill:填充色。"red"、"blue"...
outline:輪廓顏色
width:輪廓粗細
"""
chord(xy, start, end, fill, outline, width)
# 使用示例
drawer.chord((50, 50, 150, 150),start=0, end=90, fill='green', outline='red', width=3)
1
2
(6)繪制扇形
"""
xy:扇形所在橢圓的矩形的左上角坐標和右下角坐標(x1, y1, x2, y2)
start:開始角度
end:終點角度
fill:填充色。"red"、"blue"...
outline:輪廓顏色
width:輪廓粗細
"""
pieslice(xy, start, end, fill, outline, width)
# 使用示例
drawer.pieslice((50, 50, 150, 150),start=0, end=90, fill='green', outline='red', width=3)
1
(7)繪制多邊形
"""
xy:多邊形各個點坐標的元組/列表(x1, y1, x2, y2)
fill:填充色。"red"、"blue"...
outline:輪廓顏色
"""
pieslice(xy, fill, outline)
# 使用示例
drawer.polygon((50, 50, 150, 150, 150, 200, 200, 250, 50, 50), fill='green', outline='red')
1
(8)繪制點
"""
xy:點的坐標
fill:填充色。"red"、"blue"...
"""
point(xy, fill)
# 使用示例
drawer.point((100, 100), fill='black')
1
除了上面這些簡單圖形外,我們還可以使用Draw繪制文字。
5.2、繪制文字
繪制文字和繪制圖形是一樣的:
"""
xy:起點坐標
text:繪制的文本
fill:填充色。"red"、"blue"...
...其中繪制文字還有許多其它參數
"""
text(xy, text, fill)
# 使用示例
drawer.text((100, 100), text='zack' fill='red')
1
當我們繪制中文時,上述代碼會報錯,因為默認編碼是不支持中文的。我們可以在C:/windows/Fonts目錄下找到字體文件,我們選擇一個支持中文的。我這里直接是將字體文件復制到項目底下來了,代碼如下:
from PIL import Image, ImageDraw, ImageFont
# 創建一個圖像用于繪制文字
im = Image.new("RGB", (300, 300), "white")
drawer = ImageDraw.Draw(im)
# 獲取字體對象
imFont = ImageFont.truetype('simkai.ttf', 30)
# 繪制文字時設置字體
drawer.text((50, 100),text="啥",font=imFont,fill="red")
im.show()