作者 | Adrian Rosebrock
編譯 | 數盟
如果你對深度學習和卷積神經網絡感興趣,但是并不知道從哪里開始,也不知道使用哪種庫,那么這里就為你提供了許多幫助。
在這篇文章里,我詳細解讀了9個我最喜歡的Python深度學習庫。
這個名單并不詳盡,它只是我在計算機視覺的職業生涯中使用并在某個時間段發現特別有用的一個庫的列表。
這其中的一些庫我比別人用的多很多,尤其是Keras、mxnet和sklearn-theano。
其他的一些我是間接的使用,比如Theano和TensorFlow(庫包括Keras、deepy和Blocks等)。
另外的我只是在一些特別的任務中用過(比如nolearn和他們的Deep Belief Network implementation)。
這篇文章的目的是向你介紹這些庫。我建議你認真了解這里的每一個庫,然后在某個具體工作情境中你就可以確定一個最適用的庫。
我想再次重申,這份名單并不詳盡。此外,由于我是計算機視覺研究人員并長期活躍在這個領域,對卷積神經網絡(細胞神經網絡)方面的庫會關注更多。
我把這個深度學習庫的列表分為三個部分。
第一部分是比較流行的庫,你可能已經很熟悉了。對于這些庫,我提供了一個通俗的、高層次的概述。然后,針對每個庫我詳細解說了我的喜歡之處和不喜歡之處,并列舉了一些適當的應用案例。
第二部分進入到我個人最喜歡的深度學習庫,也是我日常工作中使用最多的,包括:Keras、mxnet和sklearn-theano等。
最后,我對第一部分中不經常使用的庫做了一個“福利”板塊,你或許還會從中發現有用的或者是在第二板塊中我還沒有嘗試過但看起來很有趣的庫。
接下來就讓我們繼續探索。
針對初學者:
1.Caffe
提到“深度學習庫”就不可能不說到Caffe。事實上,自從你打開這個頁面學習深度學習庫,我就敢打保票你肯定聽說Caffe。
那么,究竟Caffe是什么呢?
Caffe是由Berkeley Vision and Learning Center(BVLC)建立的深度學習框架。它是模塊化的,速度極快。而且被應用于學術界和產業界的start-of-the-art應用程序中。
事實上,如果你去翻閱最新的深度學習出版物(也提供源代碼),你就很可能會在它們相關的GitHub庫中找到Caffe模型。
雖然Caffe本身并不是一個Python庫,但它提供綁定到Python上的編程語言。我們通常在新領域開拓網絡的時候使用這些綁定。
我把Caffe放在這個列表的原因是它幾乎被應用在各個方面。你可以在一個空白文檔里定義你的模型架構和解決方案,建立一個JSON文件類型的.prototxt配置文件。Caffe二進制文件提取這些.prototxt文件并培訓你的網絡。Caffe完成培訓之后,你可以把你的網絡和經過分類的新圖像通過Caffe二進制文件,更好的就直接通過Python或MATLAB的API。
雖然我很喜歡Caffe的性能(它每天可以在K40 GPU上處理60萬張圖片),但相比之下我更喜歡Keras和mxnet。
主要的原因是,在.prototxt文件內部構建架構可能會變得相當乏味和無聊。更重要的是, Caffe不能用編程方式調整超參數!由于這兩個原因,在基于Python的API中我傾向于對允許我實現終端到終端聯播網的庫傾斜(包括交叉驗證和調整超參數)。
2.Theano
在最開始我想說Theano是美麗的。如果沒有Theano,我們根本不會達到現有的深度學習庫的數量(特別是在Python)。同樣的,如果沒有numpy,我們就不會有SciPy、scikit-learn和 scikit-image,,同樣可以說是關于Theano和深度學習更高級別的抽象。
非常核心的是,Theano是一個Python庫,用來定義、優化和評估涉及多維數組的數學表達式。 Theano通過與numpy的緊密集成,透明地使用GPU來完成這些工作。
雖然可以利用Theano建立深度學習網絡,但我傾向于認為Theano是神經網絡的基石,同樣的numpy是作為科學計算的基石。事實上,大多數我在文章中提到的庫都是圍繞著Theano,使自己變得更加便利。
不要誤會我的意思,我愛Theano,我只是不喜歡用Theano編寫代碼。
在Theano建設卷積神經網絡就像只用本機Python中的numpy寫一個定制的支持向量機(SVM),當然這個對比并不是很完美。
你可以做到嗎?
當然可以。
它值得花費您的時間和精力嗎?
嗯,也許吧。這取決于你是否想擺脫低級別或你的應用是否需要。
就個人而言,我寧愿使用像Keras這樣的庫,它把Theano包裝成更有人性化的API,同樣的方式,scikit-learn使機器學習算法工作變得更加容易。
3.TensorFlow
與Theano類似,TensorFlow是使用數據流圖進行數值計算的開源庫(這是所有神經網絡固有的特征)。最初由谷歌的機器智能研究機構內的google Brain Team研究人員開發,此后庫一直開源,并提供給公眾。
相比于Theano ,TensorFlow的主要優點是分布式計算,特別是在多GPU的環境中(雖然這是Theano正在攻克的項目)。
除了用TensorFlow而不是Theano替換Keras后端,對于TensorFlow庫我并沒有太多的經驗。然而在接下來的幾個月里,我希望這有所改變。
4.Lasagne
Lasagne是Theano中用于構建和訓練網絡的輕量級庫。這里的關鍵詞是輕量級的,也就意味著它不是一個像Keras一樣圍繞著Theano的重包裝的庫。雖然這會導致你的代碼更加繁瑣,但它會把你從各種限制中解脫出來,同時還可以讓您根據Theano進行模塊化的構建。
簡而言之:Lasagne的功能是Theano的低級編程和Keras的高級抽象之間的一個折中。
我最喜歡的:
5.Keras
如果我必須選出一個最喜歡的深度學習Python庫,我將很難在Keras和mxnet中做出抉擇——但最后,我想我會選Keras。
說真的,Keras的好處我說都說不完。
Keras是一個最低限度的、模塊化的神經網絡庫,可以使用Theano或TensorFlow作為后端。Keras最主要的用戶體驗是,從構思到產生結果將會是一個非常迅速的過程。
在Keras中架構網絡設計是十分輕松自然的。它包括一些state-of-the-art中針對優化(Adam,RMSProp)、標準化(BatchNorm)和激活層(PReLU,ELU,LeakyReLU)最新的算法。
Keras也非常注重卷積神經網絡,這也是我十分需要的。無論它是有意還是無意的,我覺得從計算機視覺的角度來看這是非常有價值的。
更重要的是,你既可以輕松地構建基于序列的網絡(其中輸入線性流經網絡)又可以創建基于圖形的網絡(輸入可以“跳過”某些層直接和后面對接)。這使得創建像GoogLeNet和SqueezeNet這樣復雜的網絡結構變得容易得多。
我認為Keras唯一的問題是它不支持多GPU環境中并行地訓練網絡。這可能會也可能不會成為你的大忌。
如果我想盡快地訓練網絡,那么我可能會使用mxnet。但是如果我需要調整超參數,我就會用Keras設置四個獨立的實驗(分別在我的Titan X GPUs上運行)并評估結果。
6.mxnet
我第二喜歡的深度學習Python庫無疑就是mxnet(重點也是訓練圖像分類網絡)。雖然在mxnet中站立一個網絡可能需要較多的代碼,但它會提供給你驚人數量的語言綁定(C ++、Python、R、JAVAScript等)。
Mxnet庫真正出色的是分布式計算,它支持在多個CPU / GPU機訓練你的網絡,甚至可以在AWS、Azure以及YARN集群。
它確實需要更多的代碼來設立一個實驗并在mxnet上運行(與Keras相比),但如果你需要跨多個GPU或系統分配訓練,我推薦mxnet。
7.sklearn-theano
有時候你并不需要終端到終端的培養一個卷積神經網絡。相反,你需要把CNN看作一個特征提取器。當你沒有足夠的數據來從頭培養一個完整的CNN時它就會變得特別有用。僅僅需要把你的輸入圖像放入流行的預先訓練架構,如OverFeat、AlexNet、VGGNet或GoogLeNet,然后從FC層提取特征(或任何您要使用的層)。
總之,這就是sklearn-theano的功能所在。你不能用它從頭到尾的訓練一個模型,但它的神奇之處就是可以把網絡作為特征提取器。當需要評估一個特定的問題是否適合使用深度學習來解決時,我傾向于使用這個庫作為我的第一手判斷。
8.nolearn
我在PyImageSearch博客上用過幾次nolearn,主要是在我的macBook Pro上進行一些初步的GPU實驗和在Amazon EC2 GPU實例中進行深度學習。
Keras把 Theano和TensorFlow包裝成了更具人性化的API,而nolearn也為Lasagne做了相同的事。此外,nolearn中所有的代碼都是與scikit-learn兼容的,這對我來說絕對是個超級的福利。
我個人不使用nolearn做卷積神經網絡(CNNs),但你當然也可以用(我更喜歡用Keras和mxnet來做CNNs)。我主要用nolearn來制作Deep Belief Networks (DBNs)。
9.DIGITS
DIGITS并不是一個真正的深度學習庫(雖然它是用Python寫的)。DIGITS(深度學習GPU培訓系統)實際上是用于培訓Caffe深度學習模式的web應用程序(雖然我認為你可以破解源代碼然后使用Caffe以外其他的后端進行工作,但這聽起來就像一場噩夢)。
如果你曾經用過Caffe,那么你就會知道通過它的終端來定義.prototxt文件、生成圖像數據、運行網絡并監管你的網絡訓練是相當繁瑣的。 DIGITS旨在通過讓你在瀏覽器中執行這些任務來解決這個問題。
此外,DIGITS的用戶界面非常出色,它可以為你提供有價值的統計數據和圖表作為你的模型訓練。另外,你可以通過各種輸入輕松地可視化網絡中的激活層。最后,如果您想測試一個特定的圖像,您可以把圖片上傳到你的DIGITS服務器或進入圖片的URL,然后你的Caffe模型將會自動分類圖像并把結果顯示在瀏覽器中。干凈利落!
福利:
10.Blocks
說實話,雖然我一直想嘗試,但截至目前我的確從來沒用過Blocks(這也是我把它包括在這個列表里的原因)。就像許多個在這個列表中的其他庫一樣,Blocks建立在Theano之上,呈現出一個用戶友好型的API。
11.deepy
如果讓你猜deepy是圍繞哪個庫建立的,你會猜什么?
沒錯,就是Theano。
我記得在前一段時間用過deepy(做了初始提交),但在接下里的大概6-8個月我都沒有碰它了。我打算在接下來的博客文章里再嘗試一下。
12.pylearn2
雖然我從沒有主動地使用pylearn2,但由于歷史原因,我覺得很有必要把它包括在這個列表里。 Pylearn2不僅僅是一般的機器學習庫(地位類似于scikit-learn),也包含了深度學習算法的實現。
對于pylearn2我最大的擔憂就是(在撰寫本文時),它沒有一個活躍的開發者。正因為如此,相比于像Keras和mxnet這樣的有積極維護的庫,推薦pylearn2我還有些猶豫。
13.Deeplearning4j
這本應是一個基于Python的列表,但我想我會把Deeplearning4j包括在這里,主要是出于對他們所做事跡的無比崇敬——Deeplearning4j為JVM建立了一個開源的、分布式的深度學習庫。
如果您在企業工作,你可能會有一個塞滿了用過的Hadoop和MapReduce服務器的儲存器。也許這些你還在用,也許早就不用了。
你怎樣才能把這些相同的服務器應用到深度學習里?
事實證明是可以的——你只需要Deeplearning4j。
深入研究深度學習和卷積神經網絡
圖1:了解PyImageSearch大師課程內的如何利用深度學習和卷積神經網絡對圖像內容進行分類
總結
在這篇文章中,我回顧了一些我最喜愛的深度學習和卷積神經網絡庫。但這個列表決不是詳盡的,而且專注于計算機視覺和卷積神經網絡的深度學習庫肯定是有失偏頗的。
盡管這樣說,但對于一個剛剛進入深度學習領域,并在尋找一個合適的庫的人,我認為這確實是一個偉大的列表。
我個人認為打敗Keras和mxne是很難的事。Keras庫位于計算的龍頭地位,如Theano和TensorFlow,可以讓您只需幾行Python代碼就可以構建深度學習架構。
雖然mxnet可能需要更多一點的代碼來構建和培養網絡,但它能夠輕松高效地將培養任務分配到多個GPU中。如果你在一個多GPU系統或環境中,并希望充分利用這個環境,那就肯定要試一試mxnet。