日日操夜夜添-日日操影院-日日草夜夜操-日日干干-精品一区二区三区波多野结衣-精品一区二区三区高清免费不卡

公告:魔扣目錄網為廣大站長提供免費收錄網站服務,提交前請做好本站友鏈:【 網站目錄:http://www.ylptlb.cn 】, 免友鏈快審服務(50元/站),

點擊這里在線咨詢客服
新站提交
  • 網站:51998
  • 待審:31
  • 小程序:12
  • 文章:1030137
  • 會員:747

RPC的實現原理

正如上一講所說,RPC主要是為了解決的兩個問題:

  • 解決分布式系統中,服務之間的調用問題。
  • 遠程調用時,要能夠像本地調用一樣方便,讓調用者感知不到遠程調用的邏輯。

還是以計算器Calculator為例,如果實現類CalculatorImpl是放在本地的,那么直接調用即可:

如何實現一個簡單的RPC

 

 

現在系統變成分布式了,CalculatorImpl和調用方不在同一個地址空間,那么就必須要進行遠程過程調用:

如何實現一個簡單的RPC

 

 

那么如何實現遠程過程調用,也就是RPC呢,一個完整的RPC流程,可以用下面這張圖來描述:

如何實現一個簡單的RPC

 

 

其中左邊的Client,對應的就是前面的Service A,而右邊的Server,對應的則是Service B。 下面一步一步詳細解釋一下。

  1. Service A的應用層代碼中,調用了Calculator的一個實現類的add方法,希望執行一個加法運算;
  2. 這個Calculator實現類,內部并不是直接實現計算器的加減乘除邏輯,而是通過遠程調用Service B的RPC接口,來獲取運算結果,因此稱之為Stub
  3. Stub怎么和Service B建立遠程通訊呢?這時候就要用到遠程通訊工具了,也就是圖中的Run-time Library,這個工具將幫你實現遠程通訊的功能,比如JAVA的Socket,就是這樣一個庫,當然,你也可以用基于Http協議的HttpClient,或者其他通訊工具類,都可以,RPC并沒有規定說你要用何種協議進行通訊
  4. Stub通過調用通訊工具提供的方法,和Service B建立起了通訊,然后將請求數據發給Service B。需要注意的是,由于底層的網絡通訊是基于二進制格式的,因此這里Stub傳給通訊工具類的數據也必須是二進制,比如calculator.add(1,2),你必須把參數值1和2放到一個Request對象里頭(這個Request對象當然不只這些信息,還包括要調用哪個服務的哪個RPC接口等其他信息),然后序列化為二進制,再傳給通訊工具類,這一點也將在下面的代碼實現中體現;
  5. 二進制的數據傳到Service B這一邊了,Service B當然也有自己的通訊工具,通過這個通訊工具接收二進制的請求;
  6. 既然數據是二進制的,那么自然要進行反序列化了,將二進制的數據反序列化為請求對象,然后將這個請求對象交給Service B的Stub處理;
  7. 和之前的Service A的Stub一樣,這里的Stub也同樣是個“假玩意”,它所負責的,只是去解析請求對象,知道調用方要調的是哪個RPC接口,傳進來的參數又是什么,然后再把這些參數傳給對應的RPC接口,也就是Calculator的實際實現類去執行。很明顯,如果是Java,那這里肯定用到了反射
  8. RPC接口執行完畢,返回執行結果,現在輪到Service B要把數據發給Service A了,怎么發?一樣的道理,一樣的流程,只是現在Service B變成了Client,Service A變成了Server而已:Service B反序列化執行結果->傳輸給Service A->Service A反序列化執行結果 -> 將結果返回給Application,完畢。

理論的講完了,是時候把理論變成實踐了。

把理論變成實踐

本文的示例代碼,可到Github下載。

首先是Client端的應用層怎么發起RPC,ComsumerApp:

public class ComsumerApp {
    public static void main(String[] args) {
        Calculator calculator = new CalculatorRemoteImpl();
        int result = calculator.add(1, 2);
    }
}

通過一個CalculatorRemoteImpl,我們把RPC的邏輯封裝進去了,客戶端調用時感知不到遠程調用的麻煩。下面再來看看CalculatorRemoteImpl,代碼有些多,但是其實就是把上面的2、3、4幾個步驟用代碼實現了而已,CalculatorRemoteImpl:

public class CalculatorRemoteImpl implements Calculator {
    public int add(int a, int b) {
        List<String> addressList = lookupProviders("Calculator.add");
        String address = chooseTarget(addressList);
        try {
            Socket socket = new Socket(address, PORT);

            // 將請求序列化
            CalculateRpcRequest calculateRpcRequest = generateRequest(a, b);
            ObjectOutputStream objectOutputStream = new ObjectOutputStream(socket.getOutputStream());

            // 將請求發給服務提供方
            objectOutputStream.writeObject(calculateRpcRequest);

            // 將響應體反序列化
            ObjectInputStream objectInputStream = new ObjectInputStream(socket.getInputStream());
            Object response = objectInputStream.readObject();

            if (response instanceof Integer) {
                return (Integer) response;
            } else {
                throw new InternalError();
            }

        } catch (Exception e) {
            log.error("fail", e);
            throw new InternalError();
        }
    }
}

add方法的前面兩行,lookupProviders和chooseTarget,可能大家會覺得不明覺厲。

分布式應用下,一個服務可能有多個實例,比如Service B,可能有ip地址為198.168.1.11和198.168.1.13兩個實例,lookupProviders,其實就是在尋找要調用的服務的實例列表。在分布式應用下,通常會有一個服務注冊中心,來提供查詢實例列表的功能。

查到實例列表之后要調用哪一個實例呢,只時候就需要chooseTarget了,其實內部就是一個負載均衡策略。

由于我們這里只是想實現一個簡單的RPC,所以暫時不考慮服務注冊中心和負載均衡,因此代碼里寫死了返回ip地址為127.0.0.1。

代碼繼續往下走,我們這里用到了Socket來進行遠程通訊,同時利用ObjectOutputStream的writeObject和ObjectInputStream的readObject,來實現序列化和反序列化。

最后再來看看Server端的實現,和Client端非常類似,ProviderApp:

public class ProviderApp {
    private Calculator calculator = new CalculatorImpl();

    public static void main(String[] args) throws IOException {
        new ProviderApp().run();
    }

    private void run() throws IOException {
        ServerSocket listener = new ServerSocket(9090);
        try {
            while (true) {
                Socket socket = listener.accept();
                try {
                    // 將請求反序列化
                    ObjectInputStream objectInputStream = new ObjectInputStream(socket.getInputStream());
                    Object object = objectInputStream.readObject();

                    log.info("request is {}", object);

                    // 調用服務
                    int result = 0;
                    if (object instanceof CalculateRpcRequest) {
                        CalculateRpcRequest calculateRpcRequest = (CalculateRpcRequest) object;
                        if ("add".equals(calculateRpcRequest.getMethod())) {
                            result = calculator.add(calculateRpcRequest.getA(), calculateRpcRequest.getB());
                        } else {
                            throw new UnsupportedOperationException();
                        }
                    }

                    // 返回結果
                    ObjectOutputStream objectOutputStream = new ObjectOutputStream(socket.getOutputStream());
                    objectOutputStream.writeObject(new Integer(result));
                } catch (Exception e) {
                    log.error("fail", e);
                } finally {
                    socket.close();
                }
            }
        } finally {
            listener.close();
        }
    }

}

Server端主要是通過ServerSocket的accept方法,來接收Client端的請求,接著就是反序列化請求->執行->序列化執行結果,最后將二進制格式的執行結果返回給Client。

就這樣我們實現了一個簡陋而又詳細的RPC。 說它簡陋,是因為這個實現確實比較挫,在下一小節會說它為什么挫。 說它詳細,是因為它一步一步的演示了一個RPC的執行流程,方便大家了解RPC的內部機制。

為什么說這個RPC實現很挫

這個RPC實現只是為了給大家演示一下RPC的原理,要是想放到生產環境去用,那是絕對不行的。

1、缺乏通用性 我通過給Calculator接口寫了一個CalculatorRemoteImpl,來實現計算器的遠程調用,下一次要是有別的接口需要遠程調用,是不是又得再寫對應的遠程調用實現類?這肯定是很不方便的。

那該如何解決呢?先來看看使用Dubbo時是如何實現RPC調用的:

@Reference
private Calculator calculator;

...

calculator.add(1,2);

...

Dubbo通過和Spring的集成,在Spring容器初始化的時候,如果掃描到對象加了@Reference注解,那么就給這個對象生成一個代理對象,這個代理對象會負責遠程通訊,然后將代理對象放進容器中。所以代碼運行期用到的calculator就是那個代理對象了。

我們可以先不和Spring集成,也就是先不采用依賴注入,但是我們要做到像Dubbo一樣,無需自己手動寫代理對象,怎么做呢?那自然是要求所有的遠程調用都遵循一套模板,把遠程調用的信息放到一個RpcRequest對象里面,發給Server端,Server端解析之后就知道你要調用的是哪個RPC接口、以及入參是什么類型、入參的值又是什么,就像Dubbo的RpcInvocation:

public class RpcInvocation implements Invocation, Serializable {

    private static final long serialVersionUID = -4355285085441097045L;

    private String methodName;

    private Class<?>[] parameterTypes;

    private Object[] arguments;

    private Map<String, String> attachments;

    private transient Invoker<?> invoker;

2、集成Spring 在實現了代理對象通用化之后,下一步就可以考慮集成Spring的IOC功能了,通過Spring來創建代理對象,這一點就需要對Spring的bean初始化有一定掌握了。

3、長連接or短連接 總不能每次要調用RPC接口時都去開啟一個Socket建立連接吧?是不是可以保持若干個長連接,然后每次有rpc請求時,把請求放到任務隊列中,然后由線程池去消費執行?只是一個思路,后續可以參考一下Dubbo是如何實現的。

4、 服務端線程池 我們現在的Server端,是單線程的,每次都要等一個請求處理完,才能去accept另一個socket的連接,這樣性能肯定很差,是不是可以通過一個線程池,來實現同時處理多個RPC請求?同樣只是一個思路。

5、服務注冊中心 正如之前提到的,要調用服務,首先你需要一個服務注冊中心,告訴你對方服務都有哪些實例。Dubbo的服務注冊中心是可以配置的,官方推薦使用Zookeeper。如果使用Zookeeper的話,要怎樣往上面注冊實例,又要怎樣獲取實例,這些都是要實現的。

6、負載均衡 如何從多個實例里挑選一個出來,進行調用,這就要用到負載均衡了。負載均衡的策略肯定不只一種,要怎樣把策略做成可配置的?又要如何實現這些策略?同樣可以參考Dubbo,Dubbo - 負載均衡

7、結果緩存 每次調用查詢接口時都要真的去Server端查詢嗎?是不是要考慮一下支持緩存?

8、多版本控制 服務端接口修改了,舊的接口怎么辦?

9、異步調用 客戶端調用完接口之后,不想等待服務端返回,想去干點別的事,可以支持不?

10、優雅停機 服務端要停機了,還沒處理完的請求,怎么辦?

......

諸如此類的優化點還有很多,這也是為什么實現一個高性能高可用的RPC框架那么難的原因。

當然,我們現在已經有很多很不錯的RPC框架可以參考了,我們完全可以借鑒一下前人的智慧。

后面如果有(dian)機(zan)會(duo)的話,也將和大家分享一下如何一步一步優化現有的這塊RPC代碼,把它做成一個小型RPC框架!

參考

  • 一本很棒的分布式書籍:《大型網站系統與Java中間件實踐》
  • Dubbo 使用文檔
  • Dubbo 源碼開發手冊

分享到:
標簽:RPC
用戶無頭像

網友整理

注冊時間:

網站:5 個   小程序:0 個  文章:12 篇

  • 51998

    網站

  • 12

    小程序

  • 1030137

    文章

  • 747

    會員

趕快注冊賬號,推廣您的網站吧!
最新入駐小程序

數獨大挑戰2018-06-03

數獨一種數學游戲,玩家需要根據9

答題星2018-06-03

您可以通過答題星輕松地創建試卷

全階人生考試2018-06-03

各種考試題,題庫,初中,高中,大學四六

運動步數有氧達人2018-06-03

記錄運動步數,積累氧氣值。還可偷

每日養生app2018-06-03

每日養生,天天健康

體育訓練成績評定2018-06-03

通用課目體育訓練成績評定