首先采用MySQL存儲千億級的數據,確實是一項非常大的挑戰。Mysql單表確實可以存儲10億級的數據,只是這個時候性能非常差,項目中大量的實驗證明,Mysql單表容量在500萬左右,性能處于最佳狀態。
針對大表的優化,主要是通過數據庫分庫分表來解決,目前比較普遍的方案有三個:分區,分庫分表,NoSql/NewSql。實際項目中,這三種方案是結合的,目前絕大部分系統的核心數據都是以RDBMS存儲為主,NoSql/NewSql存儲為輔。
分區
首先來了解一下分區方案。分區表是由多個相關的底層表實現的。這些底層表也是由句柄對象表示,所以我們也可以直接訪問各個分區,存儲引擎管理分區的各個底層表和管理普通表一樣(所有的底層表都必須使用相同的存儲引擎),分區表的索引只是在各個底層表上各自加上一個相同的索引。這個方案對用戶屏蔽了sharding的細節,即使查詢條件沒有sharding column,它也能正常工作(只是這時候性能一般)。不過它的缺點很明顯:很多的資源都受到單機的限制,例如連接數,網絡吞吐等。如何進行分區,在實際應用中是一個非常關鍵的要素之一。
下面開始舉例:以客戶信息為例,客戶數據量5000萬加,項目背景要求保存客戶的銀行卡綁定關系,客戶的證件綁定關系,以及客戶綁定的業務信息。此業務背景下,該如何設計數據庫呢。項目一期的時候,我們建立了一張客戶業務綁定關系表,里面冗余了每一位客戶綁定的業務信息。基本結構大致如下:
查詢時,對銀行卡做索引,業務編號做索引,證件號做索引。隨著需求大增多,這張表的索引會達到10個以上。而且客戶解約再簽約,里面會保存兩條數據,只是綁定的狀態不同。假設我們有5千萬的客戶,5個業務類型,每位客戶平均2張卡,那么這張表的數據量將會達到驚人的5億,事實上我們系統用戶量還沒有過百萬時就已經不行了。這樣的設計絕對是不行的,無論是插入,還是查詢,都會讓系統崩潰。
mysql數據庫中的數據是以文件的形勢存在磁盤上的,默認放在/mysql/data下面(可以通過my.cnf中的datadir來查看), 一張表主要對應著三個文件,一個是frm存放表結構的,一個是myd存放表數據的,一個是myi存表索引的。這三個文件都非常的龐大,尤其是.myd文件,快5個G了。下面進行第一次分區優化,Mysql支持的分區方式有四種:
在我們的項目中,range分區和list分區沒有使用場景,如果基于綁定編號做range或者list分區,綁定編號沒有實際的業務含義,無法通過它進行查詢,因此,我們就剩下 HASH 分區和 KEY 分區了,HASH分區僅支持int類型列的分區,且是其中的一列。 KEY 分區倒是可以支持多列,但也要求其中的一列必須是int類型;看我們的庫表結構,發現沒有哪一列是int類型的,如何做分區呢?增加一列,綁定時間列,將此列設置為int類型,然后按照綁定時間進行分區,將每一天綁定的用戶分到同一個區里面去。
這次優化之后,我們的插入快了許多,但是查詢依然很慢,為什么?
因為在做查詢的時候,我們也只是根據銀行卡或者證件號進行查詢,并沒有根據時間查詢,相當于每次查詢,mysql都會將所有的分區表查詢一遍。進行第二次方案優化,既然 HASH 分區和 KEY分區要求其中的一列必須是int類型的,那么創造出一個int類型的列出來分區是否可以?分析發現,銀行卡的那串數字有秘密。銀行卡一般是16位到19位不等的數字串,我們取其中的某一位拿出來作為表分區是否可行呢,通過分析發現,在這串數字中,其中確實有一位是0到9隨機生成的,我們基于銀行卡號+隨機位進行KEY分區,每次查詢的時候,通過計算截取出這位隨機位數字,再加上卡號,聯合查詢,達到了分區查詢的目的,需要說明的是,分區后,建立的索引,也必須是分區列,否則Mysql還是會在所有的分區表中查詢數據。
通過銀行卡號查詢綁定關系的問題解決了,那么證件號呢,如何通過證件號來查詢綁定關系。前面已經講過,做索引一定是要在分區健上進行,否則會引起全表掃描。我們再創建了一張新表,保存客戶的證件號綁定關系,每位客戶的證件號都是唯一的,新的證件號綁定關系表里,證件號作為了主鍵,那么如何來計算這個分區健呢,客戶的證件信息比較龐雜,有身份證號,港澳臺通行證,機動車駕駛證等等,如何在無序的證件號里找到分區健。為了解決這個問題,我們將證件號綁定關系表一分為二,其中的一張表專用于保存身份證類型的證件號,另一張表則保存其他證件類型的證件號,在身份證類型的證件綁定關系表中,我們將身份證號中的月數拆分出來作為了分區健,將同一個月出生的客戶證件號保存在同一個區,這樣分成了12個區,其他證件類型的證件號,數據量不超過10萬,就沒有必要進行分區了。這樣每次查詢時,首先通過證件類型確定要去查詢哪張表,再計算分區健進行查詢。作了分區設計之后,保存2000萬用戶數據時銀行卡表的數據保存文件就分成了10個小文件,證件表的數據保存文件分成了12個小文件,解決了這兩個查詢的問題,還剩下一個問題:業務編號怎么辦?一個客戶有多個簽約業務,如何進行保存?這時候,采用分區的方案就不太合適了,它需要用到分表的方案。
分表
我們前面有提到過對于mysql,其數據文件是以文件形式存儲在磁盤上的。當一個數據文件過大時,操作系統對大文件的操作就會比較麻煩耗時,且有的操作系統就不支持大文件,這個時候就必須分表了。另外對于mysql常用的存儲引擎是Innodb,它的底層數據結構是B+樹。當其數據文件過大的時候,查詢一個節點可能會查詢很多層次,而這必定會導致多次IO操作進行裝載進內存,肯定會耗時的。除此之外還有Innodb對于B+樹的鎖機制。對每個節點進行加鎖,那么當更改表結構的時候,這時候就會樹進行加鎖,當表文件大的時候,這可以認為是不可實現的。所以綜上我們就必須進行分表與分庫的操作。
如何進行分庫分表,目前互聯網上有許多的版本,比較知名的一些方案:阿里的TDDL,DRDS和cobar,京東金融的sharding-jdbc;民間組織的MyCAT;360的Atlas;美團的zebra;其他比如網易,58,京東等公司都有自研的中間件。
這么多的分庫分表中間件方案歸總起來,就兩類:client模式和proxy模式。
client模式
proxy模式
無論是client模式,還是proxy模式。幾個核心的步驟是一樣的:SQL解析,重寫,路由,執行,結果歸并。個人比較傾向于采用client模式,它架構簡單,性能損耗也比較小,運維成本低。
如何對業務類型進行分庫分表。分庫分表最重要的一步,即sharding column的選取,sharding column選擇的好壞將直接決定整個分庫分表方案最終是否成功。而sharding column的選取跟業務強相關。在我們的項目場景中,sharding column無疑最好的選擇是業務編號。通過業務編號,將客戶不同的綁定簽約業務保存到不同的表里面去,根據業務編號路由到相應的表中進行查詢,達到進一步優化sql的目的。