Pandas最初被作為金融數據分析工具而開發出來,因此,pandas為時間序列分析提供了很好的支持。
Pandas的名稱來自于面板數據(panel data)和Python數據分析(data analysis)。panel data是經濟學中關于多維數據集的一個術語,在Pandas中也提供了panel的數據類型。
數據結構:
Series:一維數組,與Numpy中的一維array類似。二者與Python基本的數據結構List也很相近,其區別是:List中的元素可以是不同的數據類型,而Array和Series中則只允許存儲相同的數據類型,這樣可以更有效的使用內存,提高運算效率。
Time- Series:以時間為索引的Series。
DataFrame:二維的表格型數據結構。很多功能與R中的data.frame類似。可以將DataFrame理解為Series的容器。以下的內容主要以DataFrame為主。
Panel :三維的數組,可以理解為DataFrame的容器。
Pandas 有兩種自己獨有的基本數據結構。讀者應該注意的是,它固然有著兩種數據結構,因為它依然是 Python 的一個庫,所以,Python 中有的數據類型在這里依然適用,也同樣還可以使用類自己定義數據類型。只不過,Pandas 里面又定義了兩種數據類型:Series 和 DataFrame,它們讓數據操作更簡單了。
因為pandas是python的第三方庫所以使用前需要安裝一下,直接使用pip install pandas 就會自動安裝pandas以及相關組件
導入pandas模塊并使用別名,以及導入Series模塊,以下使用基于本次導入。
from pandas import Series import pandas as pd