1. redis中的鏈表
在redis中鏈表的應用非常廣泛,例如列表鍵的底層實現之一就是鏈表。而且,在redis中的鏈表結構被實現成為雙向鏈表,因此,在頭部和尾部進行的操作就會非常快。通過列表鍵的命令感受一下雙向鏈表
127.0.0.1:6379> LPUSH list a b c //依次在鏈表頭部插入a、b、c (integer) 3 127.0.0.1:6379> RPUSH list d e f //依次在鏈表尾部插入d、e、f (integer) 6 127.0.0.1:6379> LRANGE list 0 -1 //查看list的值 1) "c" 2) "b" 3) "a" 4) "d" 5) "e" 6) "f"
2. 鏈表的實現
2.1 鏈表節點的實現
每個鏈表節點由adlist.h/listNode來表示
typedef struct listNode { struct listNode *prev; //前驅節點,如果是list的頭結點,則prev指向NULL struct listNode *next;//后繼節點,如果是list尾部結點,則next指向NULL void *value; //萬能指針,能夠存放任何信息 } listNode;
listNode結構通過prev和next指針就組成了雙向鏈表。剛才通過列表鍵生成的雙向鏈表如下圖
使用雙向鏈表的好處:
- prev和next指針:獲取某個節點的前驅節點和后繼節點復雜度為O(1)。
2.2%20表頭的實現
redis還提供了一個表頭,用于存放上面雙向鏈表的信息,它由adlist.h/list結構表示:
typedef%20struct%20list%20{ %20listNode%20*head;%20//鏈表頭結點指針 %20listNode%20*tail;%20//鏈表尾結點指針 %20//下面的三個函數指針就像類中的成員函數一樣 %20void%20*(*dup)(void%20*ptr);%20//復制鏈表節點保存的值 %20void%20(*free)(void%20*ptr);%20//釋放鏈表節點保存的值 %20int%20(*match)(void%20*ptr,%20void%20*key);%20//比較鏈表節點所保存的節點值和另一個輸入的值是否相等 %20unsigned%20long%20len;%20//鏈表長度計數器 }%20list;
利用list表頭管理鏈表信息的好處:
head和tail指針:對于鏈表的頭結點和尾結點操作的復雜度為O(1)。
len 鏈表長度計數器:獲取鏈表中節點數量的復雜度為O(1)。
dup、free和match指針:實現多態,鏈表節點listNode使用萬能指針void *保存節點的值,而表頭list使用dup、free和match指針來針對鏈表中存放的不同對象從而實現不同的方法
3. 鏈表結構源碼剖析
3.1 adlist.h文件
針對list結構和listNode結構的賦值和查詢操作使用宏進行封裝,而且一下操作的復雜度均為O(1)。
#define listLength(l) ((l)->len) //返回鏈表l節點數量
#define listFirst(l) ((l)->head) //返回鏈表l的頭結點地址
#define listLast(l) ((l)->tail) //返回鏈表l的尾結點地址
#define listPrevNode(n) ((n)->prev) //返回節點n的前驅節點地址
#define listNextNode(n) ((n)->next) //返回節點n的后繼節點地址
#define listNodeValue(n) ((n)->value) //返回節點n的節點值
#define listSetDupMethod(l,m) ((l)->dup = (m)) //設置鏈表l的復制函數為m方法
#define listSetFreeMethod(l,m) ((l)->free = (m)) //設置鏈表l的釋放函數為m方法
#define listSetMatchMethod(l,m) ((l)->match = (m)) //設置鏈表l的比較函數為m方法
#define listGetDupMethod(l) ((l)->dup) //返回鏈表l的賦值函數
#define listGetFree(l) ((l)->free) //返回鏈表l的釋放函數
#define listGetMatchMethod(l) ((l)->match) //返回鏈表l的比較函數
鏈表操作的函數原型(Prototypes):
list *listCreate(void); //創建一個表頭 void listRelease(list *list); //釋放list表頭和鏈表 list *listAddNodeHead(list *list, void *value); //將value添加到list鏈表的頭部 list *listAddNodeTail(list *list, void *value); //將value添加到list鏈表的尾部 list *listInsertNode(list *list, listNode *old_node, void *value, int after);//在list中,根據after在old_node節點前后插入值為value的節點。 void listDelNode(list *list, listNode *node); //從list刪除node節點 listIter *listGetIterator(list *list, int direction); //為list創建一個迭代器iterator listNode *listNext(listIter *iter); //返回迭代器iter指向的當前節點并更新iter void listReleaseIterator(listIter *iter); //釋放iter迭代器 list *listDup(list *orig); //拷貝表頭為orig的鏈表并返回 listNode *listSearchKey(list *list, void *key); //在list中查找value為key的節點并返回 listNode *listIndex(list *list, long index); //返回下標為index的節點地址 void listRewind(list *list, listIter *li); //將迭代器li重置為list的頭結點并且設置為正向迭代 void listRewindTail(list *list, listIter *li); //將迭代器li重置為list的尾結點并且設置為反向迭代 void listRotate(list *list); //將尾節點插到頭結點
3.2 鏈表迭代器
在adlist.h文件中,使用C語言實現了迭代器,源碼如下:
typedef struct listIter { listNode *next; //迭代器當前指向的節點(名字叫next有點迷惑) int direction; //迭代方向,可以取以下兩個值:AL_START_HEAD和AL_START_TAIL } listIter #define AL_START_HEAD 0 //正向迭代:從表頭向表尾進行迭代 #define AL_START_TAIL 1 //反向迭代:從表尾到表頭進行迭代
在listDup函數中就使用了迭代器,listDup函數的定義如下:
//listDup的功能是拷貝一份鏈表 list *listDup(list *orig) { list *copy; listIter *iter; listNode *node; if ((copy = listCreate()) == NULL) //創建一個表頭 return NULL; //設置新建表頭的處理函數 copy->dup = orig->dup; copy->free = orig->free; copy->match = orig->match; //迭代整個orig的鏈表,重點關注此部分。 iter = listGetIterator(orig, AL_START_HEAD);//為orig定義一個迭代器并設置迭代方向,在c++中例如是 vector<int>::interator it; while((node = listNext(iter)) != NULL) { //迭代器根據迭代方向不停迭代,相當于++it void *value; //復制節點值到新節點 if (copy->dup) { //如果定義了list結構中的dup指針,則使用該方法拷貝節點值。 value = copy->dup(node->value); if (value == NULL) { listRelease(copy); listReleaseIterator(iter); return NULL; } } else value = node->value; //獲得當前node的value值 if (listAddNodeTail(copy, value) == NULL) { //將node節點尾插到copy表頭的鏈表中 listRelease(copy); listReleaseIterator(iter); return NULL; } } listReleaseIterator(iter); //自行釋放迭代器 return copy; //返回拷貝副本
迭代器的好處:
- 提供一種方法順序訪問一個聚合對象中各個元素, 而又不需暴露該對象的內部表示。
- 將指針操作進行了統一封裝,代碼可讀性增強。
3.3 adlist.c文件
剛才所有函數的定義如下:
list *listCreate(void) //創建一個表頭 { struct list *list; //為表頭分配內存 if ((list = zmalloc(sizeof(*list))) == NULL) return NULL; //初始化表頭 list->head = list->tail = NULL; list->len = 0; list->dup = NULL; list->free = NULL; list->match = NULL; return list; //返回表頭 } /* Free the whole list. * * This function can't fail. */ void listRelease(list *list) //釋放list表頭和鏈表 { unsigned long len; listNode *current, *next; current = list->head; //備份頭節點地址 len = list->len; //備份鏈表元素個數,使用備份操作防止更改原有信息 while(len--) { //遍歷鏈表 next = current->next; if (list->free) list->free(current->value); //如果設置了list結構的釋放函數,則調用該函數釋放節點值 zfree(current); current = next; } zfree(list); //最后釋放表頭 } /* Add a new node to the list, to head, containing the specified 'value' * pointer as value. * * On error, NULL is returned and no operation is performed (i.e. the * list remains unaltered). * On success the 'list' pointer you pass to the function is returned. */ list *listAddNodeHead(list *list, void *value) //將value添加到list鏈表的頭部 { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) //為新節點分配空間 return NULL; node->value = value; //設置node的value值 if (list->len == 0) { //將node頭插到空鏈表 list->head = list->tail = node; node->prev = node->next = NULL; } else { //將node頭插到非空鏈表 node->prev = NULL; node->next = list->head; list->head->prev = node; list->head = node; } list->len++; //鏈表元素計數器加1 return list; } /* Add a new node to the list, to tail, containing the specified 'value' * pointer as value. * * On error, NULL is returned and no operation is performed (i.e. the * list remains unaltered). * On success the 'list' pointer you pass to the function is returned. */ list *listAddNodeTail(list *list, void *value) //將value添加到list鏈表的尾部 { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) //為新節點分配空間 return NULL; node->value = value; //設置node的value值 if (list->len == 0) { //將node尾插到空鏈表 list->head = list->tail = node; node->prev = node->next = NULL; } else { //將node頭插到非空鏈表 node->prev = list->tail; node->next = NULL; list->tail->next = node; list->tail = node; } list->len++; //更新鏈表節點計數器 return list; } list *listInsertNode(list *list, listNode *old_node, void *value, int after) //在list中,根據after在old_node節點前后插入值為value的節點。 { listNode *node; if ((node = zmalloc(sizeof(*node))) == NULL) //為新節點分配空間 return NULL; node->value = value; //設置node的value值 if (after) { //after 非零,則將節點插入到old_node的后面 node->prev = old_node; node->next = old_node->next; if (list->tail == old_node) { //目標節點如果是鏈表的尾節點,更新list的tail指針 list->tail = node; } } else { //after 為零,則將節點插入到old_node的前面 node->next = old_node; node->prev = old_node->prev; if (list->head == old_node) { //如果節點如果是鏈表的頭節點,更新list的head指針 list->head = node; } } if (node->prev != NULL) { //如果有,則更新node的前驅節點的指針 node->prev->next = node; } if (node->next != NULL) { //如果有,則更新node的后繼節點的指針 node->next->prev = node; } list->len++; //更新鏈表節點計數器 return list; } /* Remove the specified node from the specified list. * It's up to the caller to free the private value of the node. * * This function can't fail. */ void listDelNode(list *list, listNode *node) //從list刪除node節點 { if (node->prev) //更新node的前驅節點的指針 node->prev->next = node->next; else list->head = node->next; if (node->next) //更新node的后繼節點的指針 node->next->prev = node->prev; else list->tail = node->prev; if (list->free) list->free(node->value); //如果設置了list結構的釋放函數,則調用該函數釋放節點值 zfree(node); //釋放節點 list->len--; //更新鏈表節點計數器 } /* Returns a list iterator 'iter'. After the initialization every * call to listNext() will return the next element of the list. * * This function can't fail. */ listIter *listGetIterator(list *list, int direction) //為list創建一個迭代器iterator { listIter *iter; if ((iter = zmalloc(sizeof(*iter))) == NULL) return NULL; //為迭代器申請空間 if (direction == AL_START_HEAD) //設置迭代指針的起始位置 iter->next = list->head; else iter->next = list->tail; iter->direction = direction; //設置迭代方向 return iter; } /* Release the iterator memory */ void listReleaseIterator(listIter *iter) { //釋放iter迭代器 zfree(iter); } /* Create an iterator in the list private iterator structure */ void listRewind(list *list, listIter *li) { //將迭代器li重置為list的頭結點并且設置為正向迭代 li->next = list->head; //設置迭代指針的起始位置 li->direction = AL_START_HEAD; //設置迭代方向從頭到尾 } void listRewindTail(list *list, listIter *li) { //將迭代器li重置為list的尾結點并且設置為反向迭代 li->next = list->tail; //設置迭代指針的起始位置 li->direction = AL_START_TAIL; //設置迭代方向從尾到頭 } /* Return the next element of an iterator. * It's valid to remove the currently returned element using * listDelNode(), but not to remove other elements. * * The function returns a pointer to the next element of the list, * or NULL if there are no more elements, so the classical usage patter * is: * * iter = listGetIterator(list,<direction>); * while ((node = listNext(iter)) != NULL) { * doSomethingWith(listNodeValue(node)); * } * * */ listNode *listNext(listIter *iter) //返回迭代器iter指向的當前節點并更新iter { listNode *current = iter->next; //備份當前迭代器指向的節點 if (current != NULL) { if (iter->direction == AL_START_HEAD) //根據迭代方向更新迭代指針 iter->next = current->next; else iter->next = current->prev; } return current; //返回備份的當前節點地址 } /* Duplicate the whole list. On out of memory NULL is returned. * On success a copy of the original list is returned. * * The 'Dup' method set with listSetDupMethod() function is used * to copy the node value. Otherwise the same pointer value of * the original node is used as value of the copied node. * * The original list both on success or error is never modified. */ list *listDup(list *orig) //拷貝表頭為orig的鏈表并返回 { list *copy; listIter *iter; listNode *node; if ((copy = listCreate()) == NULL) //創建一個表頭 return NULL; //設置新建表頭的處理函數 copy->dup = orig->dup; copy->free = orig->free; copy->match = orig->match; //迭代整個orig的鏈表 iter = listGetIterator(orig, AL_START_HEAD); //為orig定義一個迭代器并設置迭代方向 while((node = listNext(iter)) != NULL) { //迭代器根據迭代方向不停迭代 void *value; //復制節點值到新節點 if (copy->dup) { value = copy->dup(node->value); //如果定義了list結構中的dup指針,則使用該方法拷貝節點值。 if (value == NULL) { listRelease(copy); listReleaseIterator(iter); return NULL; } } else value = node->value; //獲得當前node的value值 if (listAddNodeTail(copy, value) == NULL) { //將node節點尾插到copy表頭的鏈表中 listRelease(copy); listReleaseIterator(iter); return NULL; } } listReleaseIterator(iter); //自行釋放迭代器 return copy; //返回拷貝副本 } /* Search the list for a node matching a given key. * The match is performed using the 'match' method * set with listSetMatchMethod(). If no 'match' method * is set, the 'value' pointer of every node is directly * compared with the 'key' pointer. * * On success the first matching node pointer is returned * (search starts from head). If no matching node exists * NULL is returned. */ listNode *listSearchKey(list *list, void *key) //在list中查找value為key的節點并返回 { listIter *iter; listNode *node; iter = listGetIterator(list, AL_START_HEAD); //創建迭代器 while((node = listNext(iter)) != NULL) { //迭代整個鏈表 if (list->match) { //如果設置list結構中的match方法,則用該方法比較 if (list->match(node->value, key)) { listReleaseIterator(iter); //如果找到,釋放迭代器返回node地址 return node; } } else { if (key == node->value) { listReleaseIterator(iter); return node; } } } listReleaseIterator(iter); //釋放迭代器 return NULL; } /* Return the element at the specified zero-based index * where 0 is the head, 1 is the element next to head * and so on. Negative integers are used in order to count * from the tail, -1 is the last element, -2 the penultimate * and so on. If the index is out of range NULL is returned. */ listNode *listIndex(list *list, long index) { //返回下標為index的節點地址 listNode *n; if (index < 0) { index = (-index)-1; //如果下標為負數,從鏈表尾部開始 n = list->tail; while(index-- && n) n = n->prev; } else { n = list->head; //如果下標為正數,從鏈表頭部開始 while(index-- && n) n = n->next; } return n; } /* Rotate the list removing the tail node and inserting it to the head. */ void listRotate(list *list) { //將尾節點插到頭結點 listNode *tail = list->tail; if (listLength(list) <= 1) return; //只有一個節點或空鏈表直接返回 /* Detach current tail */ list->tail = tail->prev; //取出尾節點,更新list的tail指針 list->tail->next = NULL; /* Move it as head */ list->head->prev = tail; //將節點插到表頭,更新list的head指針 tail->prev = NULL; tail->next = list->head; list->head = tail; }