大家好,我是李工,創作不易,希望大家多多支持我。
之前給大家講過磁敏傳感器,磁敏傳感器的工作原理,還有各種類型的傳感器,為了避免大家忽略掉本文的內容,關于各類傳感器的文章文末有總結。
之前在講磁敏傳感器的時候,有簡單介紹過霍爾(效應)傳感器,今天就來詳細講講。主要是關于以下6個方面,圖片點擊放大觀看。
- 霍爾效應
- 霍爾效應原理
- 霍爾(效應)傳感器
- 霍爾(效應)傳感器原理
- 霍爾(效應)傳感器檢測方法
- 霍爾(效應)傳感器優缺點
什么是霍爾效應?
霍爾效應是由帶電粒子(如電子)相應電場和磁場的相互作用引起的。更為形象生動的大家可以看下面這個霍爾效應原理動畫圖。
霍爾效應原理動圖畫來源于外網
霍爾效應原理
當導電板連接到帶有電池的電路時,電流開始流動。電荷載體將沿著從板的一端到另一端的線性路徑。電荷載流子的運動導致磁場的產生。當磁體靠近板放置時,電荷載流子的磁場會發生畸變。這擾亂了電荷載流子的直線流動。擾亂電荷載流子流動方向的力稱為洛倫茲力。
由于電荷載流子磁場的畸變,帶負電的電子將偏轉到板的一側,而帶正電的空穴將偏轉到板的另一側。在板的兩側之間會產生一個電位差,稱為霍爾電壓,可以用儀表測量。
霍爾效應和洛倫茲力,藍色箭頭 B 表示垂直穿過導電板的磁場
霍爾效應原理表明:當將載流導體或半導體引入垂直磁場時,可以在電流路徑成直角的位置測量電壓。
霍爾電壓表示為 VH 由公式給出:
霍爾電壓公式
- VH 是導電板上的霍爾電壓
- I 是流過傳感器的電流
- B 是磁場強度
- q 是電荷
- n 是每單位體積的電荷載流子的數量
- d 是傳感器的厚度
霍爾效應傳感器原理
當傳感器周圍的磁通密度超過某個預設閾值時,傳感器會檢測到它并產生稱為霍爾電壓 VH 的輸出電壓。具體的原理如下圖所示。
霍爾效應傳感器基本上由一塊薄薄的矩形 p 型半導體材料組成,例如砷化鎵 (GaAs)、銻化銦 (InSb) 或砷化銦 (InAs),其自身通過連續電流。
霍爾效應傳感器原理圖
當霍爾效應傳感器放置在磁場中時,磁通量線對半導體材料施加一個力,使載流子、電子和空穴偏轉到半導體板的任一側。電荷載流子的這種運動是它們穿過半導體材料時所經歷的磁力的結果。
當這些電子和空穴向側面移動時,由于這些電荷載流子的積累,在半導體材料的兩側之間會產生電位差。然后,電子通過半導體材料的運動受到與其成直角的外部磁場的影響,這種影響在扁平矩形材料中更大。
霍爾效應提供有關磁極類型和磁場大小的信息。例如,南極會使設備產生電壓輸出,而北極則不會產生任何影響。通常,霍爾效應傳感器和開關設計為在不存在磁場時處于“關閉”狀態(開路狀態)。它們只有在受到足夠強度和極性的磁場時才會“打開”(閉路條件)。
霍爾效應傳感器
在最簡單的形式中,傳感器作為模擬傳感器工作,直接返回電壓。在已知磁場的情況下,可以確定其與霍爾板的距離。使用傳感器組,可以推斷出磁體的相對位置。
通常,霍爾效應傳感器與允許設備以數字(開/關)模式運行的電路相結合,并且在此配置中可能被稱為開關。下圖為包含兩個磁鐵的輪子經過霍爾效應傳感器,可以明顯的看到燈的變化。
包含兩個磁鐵的輪子經過霍爾效應傳感器
霍爾效應傳感器
大多數霍爾效應器件不能直接切換大型電氣負載,因為它們的輸出驅動能力非常小,大約為 10 到 20mA。對于大電流負載,在輸出中添加一個集電極開路(電流吸收)NPN 晶體管。如下圖所示:
該晶體管在其飽和區域中作為 NPN 灌電流開關工作,只要施加的磁通密度高于“ON”預設點的磁通密度,就會將輸出端子短接到地。
輸出開關晶體管可以是發射極開路晶體管、集電極開路晶體管配置或兩者都提供推挽輸出類型配置,該配置可以吸收足夠的電流以直接驅動許多負載,包括繼電器、電機、LED 和燈。
典型的霍爾效應開關圖
霍爾效應傳感器可提供線性或數字輸出。線性(模擬)傳感器的輸出信號直接取自運算放大器的輸出,輸出電壓與通過霍爾傳感器的磁場成正比。該輸出霍爾電壓為:
霍爾電壓公式圖
- V H是以伏特為單位的霍爾電壓
- R H是霍爾效應系數
- I是流過傳感器的電流,單位為安培
- t是傳感器的厚度,單位為 mm
- B是特斯拉的磁通量密度
線性或模擬傳感器提供連續的電壓輸出,該輸出隨強磁場增加而隨著弱磁場減少。在線性輸出霍爾效應傳感器中,隨著磁場強度的增加,來自放大器的輸出信號也會增加,直到它開始因施加電源的限制而飽和。
磁場的任何額外增加都不會對輸出產生影響,但會使其更加飽和。
霍爾傳感器測量方法--磁場的運動路徑
霍爾效應傳感器由磁場激活,在許多應用中,該設備可以通過連接到移動軸或設備的單個永磁體來操作。有許多不同類型的磁鐵運動,例如“正面”、“側身”、“推拉”或“推-推”等感應運動。
使用每種類型的配置,以確保最大靈敏度,磁通線必須始終垂直于設備的感應區域,并且必須具有正確的極性。
此外,為了確保線性,需要高場強磁鐵,以便為所需的運動產生較大的場強變化。檢測磁場有多種可能的運動路徑,以下是使用單個磁體的兩種更常見的傳感配置:正面檢測和側向檢測。
1、霍爾傳感器測量方法--正面檢測
顧名思義,“正面檢測”要求磁場垂直于霍爾效應傳感設備,并且為了檢測,它直接朝向有源面接近傳感器。一種“正面”的方法。
這種正面方法會產生一個輸出信號VH,它在線性器件中表示磁場強度,即磁通量密度,它是距霍爾效應傳感器的距離的函數。距離越近,磁場越強,輸出電壓越大,反之亦然。
線性器件還可以區分正磁場和負磁場。非線性裝置可以在遠離磁鐵的預設氣隙距離處觸發輸出“ON”,以指示位置檢測。
2、霍爾傳感器測量方法--側身檢測
第二種傳感配置是“橫向檢測”。這需要在霍爾效應元件的表面上橫向移動磁鐵。
當磁場在固定氣隙距離內穿過霍爾元件的表面時,側向或滑過檢測對于檢測磁場的存在很有用,例如,計算旋轉磁鐵或電機的旋轉速度。
根據磁場通過傳感器零場中心線時的位置,可以產生表示正輸出和負輸出的線性輸出電壓。這允許定向運動檢測,它可以是垂直的也可以是水平的。
霍爾傳感器--位置檢測器
根據設備的類型(無論是數字的還是線性的),有許多不同的方法可以將霍爾效應傳感器連接到電氣和電子電路。一個非常簡單且易于構建的實例如下圖:
位置檢測器
當不存在磁場(0 )時,正面位置檢測器將“關閉”。當永磁體南極(正高斯)垂直移動到霍爾效應傳感器的有效區域時,設備將“打開”并點亮 LED。一旦切換“ON”,霍爾效應傳感器將保持“ON”。
霍爾傳感器優缺點
優點
霍爾效應傳感器可以用作電子開關。
- 這種開關的成本低于機械開關,而且更可靠。
- 它的工作頻率最高可達 100 kHz。
- 它不會受到觸點反彈的影響,因為使用了具有滯后功能的固態開關而不是機械觸點。
- 由于傳感器采用密封包裝,因此不會受到環境污染物的影響。因此,它可以在惡劣的條件下使用。
對于線性傳感器(用于磁場強度測量),霍爾效應傳感器:
- 可以測量范圍廣泛的磁場
- 可以測量北極或南極磁場
- 可以是平的
缺點
霍爾效應傳感器提供的測量精度遠低于磁通門磁力計或基于磁阻的傳感器。此外,霍爾效應傳感器漂移顯著,需要補償。
以上就是關于霍爾傳感器的一些介紹,希望大家多多支持我,收藏、點贊、有什么疑問歡迎在評論區留言,還可以分享給身邊的工程師朋友。