今天我們就來討論面試官最喜歡問到的排序算法吧,從冒泡排序、選擇排序、插入排序等十大排序算法的排序步驟、代碼實現兩個方面入手,徹底搞清實現原理,保證面試道路一路暢通。
01 排序算法的概述
所謂排序算法,就是通過特定的算法因式將一組或多組數據按照一定模式進行重新排序。
這種新序列遵循著一定的規則,體現出一定的規律,因此,經處理后的數據便于篩選和計算,大大提高了計算效率。
02 排序算法的分類
03評價標準
(1)時間復雜度:即從序列的初始狀態到經過排序算法的變換移位等操作變到最終排序好的結果狀態的過程所花費的時間度量。
(2)空間復雜度:就是從序列的初始狀態經過排序移位變換的過程一直到最終的狀態所花費的空間開銷。
(3)穩定性:穩定性是不管考慮時間和空間必須要考慮的問題,往往也是非常重要的影響選擇的因素。
04 實現步驟與代碼
冒泡排序(Bubble Sort)
冒泡排序是一種簡單直觀的排序算法。它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換的數據,也就是說該數列已經排序完成。這個算法的名字由來是因為越小的元素會經由交換慢慢"浮"到數列的頂端。
(1)算法步驟
步驟1:比較相鄰的元素。如果第一個比第二個大,就交換他們兩個;步驟2:對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最后一對。這步做完后,最后的元素會是最大的數;步驟3:針對所有的元素重復以上的步驟,除了最后一個;步驟4:重復步驟1~3,直到排序完成;
(2)過程演示
(3)代碼實現
public class BubbleSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數內容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
for (int i = 1; i < arr.length; i++) {
// 設定一個標記,若為true,則表示此次循環沒有進行交換,也就是待排序列已經有序,排序已經完成。
boolean flag = true;
for (int j = 0; j < arr.length - i; j++) {
if (arr[j] > arr[j + 1]) {
int tmp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = tmp;
flag = false;
}
}
if (flag) {
break;
}
}
return arr;
}
}
選擇排序(Selection Sort)
選擇排序是一種簡單直觀的排序算法,無論什么數據進去都是 O(n²) 的時間復雜度。所以用到它的時候,數據規模越小越好。
(1)算法步驟
步驟1:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置;步驟2:再從剩余未排序元素中繼續尋找最小(大)元素,然后放到已排序序列的末尾;步驟3:重復步驟2,直到所有元素均排序完畢;
(2)過程演示
(3)代碼實現
public class SelectionSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
// 總共要經過 N-1 輪比較
for (int i = 0; i < arr.length - 1; i++) {
int min = i;
// 每輪需要比較的次數 N-i
for (int j = i + 1; j < arr.length; j++) {
if (arr[j] < arr[min]) {
// 記錄目前能找到的最小值元素的下標
min = j;
}
}
// 將找到的最小值和i位置所在的值進行交換
if (i != min) {
int tmp = arr[i];
arr[i] = arr[min];
arr[min] = tmp;
}
}
return arr;
}
}
插入排序(Insertion Sort)
插入排序的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構建有序序列,對于未排序數據,在已排序序列中從后向前掃描,找到相應位置并插入。插入排序在實現上,通常采用in-place排序(即只需用到O(1)的額外空間的排序),因而在從后向前掃描過程中,需要反復把已排序元素逐步向后挪位,為最新元素提供插入空間。
(1)算法步驟
步驟1:從第一個元素開始,該元素可以認為已經被排序;步驟2:取出下一個元素,在已經排序的元素序列中從后向前掃描;步驟3:如果該元素(已排序)大于新元素,將該元素移到下一位置;步驟4:重復步驟3,直到找到已排序的元素小于或者等于新元素的位置;步驟5:將新元素插入到該位置后;步驟6:重復步驟2~5;
(2)過程演示
(3)代碼實現
public class InsertSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數內容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
// 從下標為1的元素開始選擇合適的位置插入,因為下標為0的只有一個元素,默認是有序的
for (int i = 1; i < arr.length; i++) {
// 記錄要插入的數據
int tmp = arr[i];
// 從已經排序的序列最右邊的開始比較,找到比其小的數
int j = i;
while (j > 0 && tmp < arr[j - 1]) {
arr[j] = arr[j - 1];
j--;
}
// 存在比其小的數,插入
if (j != i) {
arr[j] = tmp;
}
}
return arr;
}
}
希爾排序(Shell Sort)
希爾排序,也稱遞減增量排序算法,是插入排序的一種更高效的改進版本。但希爾排序是非穩定排序算法。
希爾排序是基于插入排序的以下兩點性質而提出改進方法的:
- 插入排序在對幾乎已經排好序的數據操作時,效率高,即可以達到線性排序的效率;
- 但插入排序一般來說是低效的,因為插入排序每次只能將數據移動一位;
希爾排序的基本思想是:先將整個待排序的記錄序列分割成為若干子序列分別進行直接插入排序,待整個序列中的記錄"基本有序"時,再對全體記錄進行依次直接插入排序。
(1)算法步驟
步驟1:選擇一個增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;步驟2:按增量序列個數 k,對序列進行 k趟排序;步驟3:每趟排序,根據對應的增量 ti,將待排序列分割成若干長度為 m 的子序列,分別對各子表進行直接插入排序。僅增量因子為 1時,整個序列作為一個表來處理,表長度即為整個序列的長度;
(2)過程演示
(3)代碼實現
public class ShellSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數內容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
int gap = 1;
while (gap < arr.length) {
gap = gap * 3 + 1;
}
while (gap > 0) {
for (int i = gap; i < arr.length; i++) {
int tmp = arr[i];
int j = i - gap;
while (j >= 0 && arr[j] > tmp) {
arr[j + gap] = arr[j];
j -= gap;
}
arr[j + gap] = tmp;
}
gap = (int) Math.floor(gap / 3);
}
return arr;
}
}
歸并排序(Merge Sort)
歸并排序是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。歸并排序是一種穩定的排序方法。將已有序的子序列合并,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合并成一個有序表,稱為2-路歸并。
和選擇排序一樣,歸并排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因為始終都是O(n log n)的時間復雜度。代價是需要額外的內存空間。
(1)算法步驟
步驟1:把長度為n的輸入序列分成兩個長度為n/2的子序列;步驟2:對這兩個子序列分別采用歸并排序;步驟3:將兩個排序好的子序列合并成一個最終的排序序列;
(2)過程演示
(3)代碼實現
public class MergeSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數內容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
if (arr.length < 2) {
return arr;
}
int middle = (int) Math.floor(arr.length / 2);
int[] left = Arrays.copyOfRange(arr, 0, middle);
int[] right = Arrays.copyOfRange(arr, middle, arr.length);
return merge(sort(left), sort(right));
}
protected int[] merge(int[] left, int[] right) {
int[] result = new int[left.length + right.length];
int i = 0;
while (left.length > 0 && right.length > 0) {
if (left[0] <= right[0]) {
result[i++] = left[0];
left = Arrays.copyOfRange(left, 1, left.length);
} else {
result[i++] = right[0];
right = Arrays.copyOfRange(right, 1, right.length);
}
}
while (left.length > 0) {
result[i++] = left[0];
left = Arrays.copyOfRange(left, 1, left.length);
}
while (right.length > 0) {
result[i++] = right[0];
right = Arrays.copyOfRange(right, 1, right.length);
}
return result;
}
}
快速排序(Quick Sort)
快速排序是由東尼·霍爾所發展的一種排序算法。在平均狀況下,排序n個項目要 Ο(n log n) 次比較。在最壞狀況下則需要 Ο(n^2) 次比較,但這種狀況并不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串行(list)分為兩個子串行(sub-lists)。
(1)算法步驟
步驟1:從數列中挑出一個元素,稱為 "基準"(pivot);步驟2:重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的后面(相同的數可以到任一邊)。在這個分區退出之后,該基準就處于數列的中間位置。這個稱為分區(partition)操作;步驟3:遞歸地(recursive)把小于基準值元素的子數列和大于基準值元素的子數列排序;
(2)過程演示
(3)代碼實現
public class QuickSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數內容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
return quickSort(arr, 0, arr.length - 1);
}
private int[] quickSort(int[] arr, int left, int right) {
if (left < right) {
int partitionIndex = partition(arr, left, right);
quickSort(arr, left, partitionIndex - 1);
quickSort(arr, partitionIndex + 1, right);
}
return arr;
}
private int partition(int[] arr, int left, int right) {
// 設定基準值(pivot)
int pivot = left;
int index = pivot + 1;
for (int i = index; i <= right; i++) {
if (arr[i] < arr[pivot]) {
swap(arr, i, index);
index++;
}
}
swap(arr, pivot, index - 1);
return index - 1;
}
private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
堆排序(Heap Sort)
堆排序是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:
- 大頂堆:每個節點的值都大于或等于其子節點的值,在堆排序算法中用于升序排列;
- 小頂堆:每個節點的值都小于或等于其子節點的值,在堆排序算法中用于降序排列;
堆排序的平均時間復雜度為 O(n log n)。
(1)算法步驟
步驟1:將初始待排序關鍵字序列(R1,R2….Rn)構建成大頂堆,此堆為初始的無序區;步驟2:將堆頂元素R[1]與最后一個元素R[n]交換,此時得到新的無序區(R1,R2,……Rn-1)和新的有序區(Rn),且滿足R[1,2…n-1]<=R[n];步驟3:由于交換后新的堆頂R[1]可能違反堆的性質,因此需要對當前無序區(R1,R2,……Rn-1)調整為新堆,然后再次將R[1]與無序區最后一個元素交換,得到新的無序區(R1,R2….Rn-2)和新的有序區(Rn-1,Rn)。不斷重復此過程直到有序區的元素個數為n-1,則整個排序過程完成;
(2)過程演示
(3)代碼實現
public class HeapSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數內容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
int len = arr.length;
buildMaxHeap(arr, len);
for (int i = len - 1; i > 0; i--) {
swap(arr, 0, i);
len--;
heapify(arr, 0, len);
}
return arr;
}
private void buildMaxHeap(int[] arr, int len) {
for (int i = (int) Math.floor(len / 2); i >= 0; i--) {
heapify(arr, i, len);
}
}
private void heapify(int[] arr, int i, int len) {
int left = 2 * i + 1;
int right = 2 * i + 2;
int largest = i;
if (left < len && arr[left] > arr[largest]) {
largest = left;
}
if (right < len && arr[right] > arr[largest]) {
largest = right;
}
if (largest != i) {
swap(arr, i, largest);
heapify(arr, largest, len);
}
}
private void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
計數排序(Counting Sort)
計數排序 的核心在于將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中。作為一種線性時間復雜度的排序,計數排序要求輸入的數據必須是有確定范圍的整數。
計數排序是一種穩定的排序算法。計數排序使用一個額外的數組C,其中第i個元素是待排序數組A中值等于i的元素的個數。然后根據數組C來將A中的元素排到正確的位置。它只能對整數進行排序。
(1)算法步驟
步驟1:找出待排序的數組中最大和最小的元素;步驟2:統計數組中每個值為i的元素出現的次數,存入數組C的第i項;步驟3:對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);步驟4:反向填充目標數組:將每個元素i放在新數組的第C(i)項,每放一個元素就將C(i)減去1;
(2)過程演示
(3)代碼實現
public class CountingSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數內容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
int maxValue = getMaxValue(arr);
return countingSort(arr, maxValue);
}
private int[] countingSort(int[] arr, int maxValue) {
int bucketLen = maxValue + 1;
int[] bucket = new int[bucketLen];
for (int value : arr) {
bucket[value]++;
}
int sortedIndex = 0;
for (int j = 0; j < bucketLen; j++) {
while (bucket[j] > 0) {
arr[sortedIndex++] = j;
bucket[j]--;
}
}
return arr;
}
private int getMaxValue(int[] arr) {
int maxValue = arr[0];
for (int value : arr) {
if (maxValue < value) {
maxValue = value;
}
}
return maxValue;
}
}
桶排序(Bucket Sort)
桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在于這個映射函數的確定。為了使桶排序更加高效,我們需要做到這兩點:
- 在額外空間充足的情況下,盡量增大桶的數量
- 使用的映射函數能夠將輸入的N個數據均勻的分配到K個桶中
同時,對于桶中元素的排序,選擇何種比較排序算法對于性能的影響至關重要。
(1)算法步驟
步驟1:人為設置一個BucketSize,作為每個桶所能放置多少個不同數值(例如當BucketSize==5時,該桶可以存放{1,2,3,4,5}這幾種數字,但是容量不限,即可以存放100個3);步驟2:遍歷輸入數據,并且把數據一個一個放到對應的桶里去;步驟3:對每個不是空的桶進行排序,可以使用其它排序方法,也可以遞歸使用桶排序;步驟4:從不是空的桶里把排好序的數據拼接起來;
注意,如果遞歸使用桶排序為各個桶排序,則當桶數量為1時要手動減小BucketSize增加下一循環桶的數量,否則會陷入死循環,導致內存溢出;
(2)過程演示
(3)代碼實現
/**
* 桶排序
*
* @param array
* @param bucketSize
* @return
*/
public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
if (array == null || array.size() < 2)
return array;
int max = array.get(0), min = array.get(0);
// 找到最大值最小值
for (int i = 0; i < array.size(); i++) {
if (array.get(i) > max)
max = array.get(i);
if (array.get(i) < min)
min = array.get(i);
}
int bucketCount = (max - min) / bucketSize + 1;
ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
ArrayList<Integer> resultArr = new ArrayList<>();
for (int i = 0; i < bucketCount; i++) {
bucketArr.add(new ArrayList<Integer>());
}
for (int i = 0; i < array.size(); i++) {
bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
}
for (int i = 0; i < bucketCount; i++) {
if (bucketSize == 1) { // 如果待排序數組中有重復數字時
for (int j = 0; j < bucketArr.get(i).size(); j++)
resultArr.add(bucketArr.get(i).get(j));
} else {
if (bucketCount == 1)
bucketSize--;
ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
for (int j = 0; j < temp.size(); j++)
resultArr.add(temp.get(j));
}
}
return resultArr;
}
基數排序(Radix Sort)
基數排序也是非比較的排序算法,對每一位進行排序,從最低位開始排序,復雜度為O(kn),為數組長度,k為數組中的數的最大的位數;
基數排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次類推,直到最高位。有時候有些屬性是有優先級順序的,先按低優先級排序,再按高優先級排序。最后的次序就是高優先級高的在前,高優先級相同的低優先級高的在前。基數排序基于分別排序,分別收集,所以是穩定的。
(1)算法步驟
步驟1:取得數組中的最大數,并取得位數;步驟2:arr為原始數組,從最低位開始取每個位組成radix數組;步驟3:對radix進行計數排序(利用計數排序適用于小范圍數的特點);
(2)過程演示
(3)代碼實現
/**
* 基數排序
*/
public class RadixSort implements IArraySort {
@Override
public int[] sort(int[] sourceArray) throws Exception {
// 對 arr 進行拷貝,不改變參數內容
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);
int maxDigit = getMaxDigit(arr);
return radixSort(arr, maxDigit);
}
/**
* 獲取最高位數
*/
private int getMaxDigit(int[] arr) {
int maxValue = getMaxValue(arr);
return getNumLenght(maxValue);
}
private int getMaxValue(int[] arr) {
int maxValue = arr[0];
for (int value : arr) {
if (maxValue < value) {
maxValue = value;
}
}
return maxValue;
}
protected int getNumLenght(long num) {
if (num == 0) {
return 1;
}
int lenght = 0;
for (long temp = num; temp != 0; temp /= 10) {
lenght++;
}
return lenght;
}
private int[] radixSort(int[] arr, int maxDigit) {
int mod = 10;
int dev = 1;
for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) {
// 考慮負數的情況,這里擴展一倍隊列數,其中 [0-9]對應負數,[10-19]對應正數 (bucket + 10)
int[][] counter = new int[mod * 2][0];
for (int j = 0; j < arr.length; j++) {
int bucket = ((arr[j] % mod) / dev) + mod;
counter[bucket] = arrayAppend(counter[bucket], arr[j]);
}
int pos = 0;
for (int[] bucket : counter) {
for (int value : bucket) {
arr[pos++] = value;
}
}
}
return arr;
}
/**
* 自動擴容,并保存數據
*
* @param arr
* @param value
*/
private int[] arrayAppend(int[] arr, int value) {
arr = Arrays.copyOf(arr, arr.length + 1);
arr[arr.length - 1] = value;
return arr;
}
}
05 總結