秒殺業務分析
正常電子商務流程:
- 查詢商品
- 創建訂單
- 扣減庫存
- 更新訂單
- 付款
- 賣家發貨
秒殺業務的特性
- 低廉價格
- 大幅推廣
- 瞬時售空
- 一般是定時上架
- 時間短、瞬時并發量高
秒殺技術挑戰
假設某網站秒殺活動只推出一件商品,預計會吸引1萬人參加活動,也就說最大并發請求數是10000,秒殺系統需要面對的技術挑戰有:
1、對現有網站業務造成沖擊
秒殺活動只是網站營銷的一個附加活動,這個活動具有時間短,并發訪問量大的特點,如果和網站原有應用部署在一起,必然會對現有業務造成沖擊,稍有不慎可能導致整個網站癱瘓。
解決方案:將秒殺系統獨立部署,甚至使用獨立域名,使其與網站完全隔離。
2、高并發下的應用、數據庫負載
用戶在秒殺開始前,通過不停刷新瀏覽器頁面以保證不會錯過秒殺,這些請求如果按照一般的網站應用架構,訪問應用服務器、連接數據庫,會對應用服務器和數據庫服務器造成負載壓力。
解決方案:重新設計秒殺商品頁面,不使用網站原來的商品詳細頁面,頁面內容靜態化,用戶請求不需要經過應用服務。
3、突然增加的網絡及服務器帶寬
假設商品頁面大小200K(主要是商品圖片大小),那么需要的網絡和服務器帶寬是2G(200K×10000),這些網絡帶寬是因為秒殺活動新增的,超過網站平時使用的帶寬。
解決方案:因為秒殺新增的網絡帶寬,必須和運營商重新購買或者租借。為了減輕網站服務器的壓力,需要將秒殺商品頁面緩存在CDN,同樣需要和CDN服務商臨時租借新增的出口帶寬。
4、直接下單
秒殺的游戲規則是到了秒殺才能開始對商品下單購買,在此時間點之前,只能瀏覽商品信息,不能下單。而下單頁面也是一個普通的URL,如果得到這個URL,不用等到秒殺開始就可以下單了。
解決方案:為了避免用戶直接訪問下單頁面URL,需要將改URL動態化,即使秒殺系統的開發者也無法在秒殺開始前訪問下單頁面的URL。辦法是在下單頁面URL加入由服務器端生成的隨機數作為參數,在秒殺開始的時候才能得到。
5、如何控制秒殺商品頁面購買按鈕的點亮
購買按鈕只有在秒殺開始的時候才能點亮,在此之前是灰色的。如果該頁面是動態生成的,當然可以在服務器端構造響應頁面輸出,控制該按鈕是灰色還是點亮,但是為了減輕服務器端負載壓力,更好地利用CDN、反向代理等性能優化手段,該頁面被設計為靜態頁面,緩存在CDN、反向代理服務器上,甚至用戶瀏覽器上。秒殺開始時,用戶刷新頁面,請求根本不會到達應用服務器。
解決方案:使用JAVAScript腳本控制,在秒殺商品靜態頁面中加入一個JavaScript文件引用,該JavaScript文件中包含秒殺開始標志為否;當秒殺開始的時候生成一個新的JavaScript文件(文件名保持不變,只是內容不一樣),更新秒殺開始標志為是,加入下單頁面的URL及隨機數參數(這個隨機數只會產生一個,即所有人看到的URL都是同一個,服務器端可以用redis這種分布式緩存服務器來保存隨機數),并被用戶瀏覽器加載,控制秒殺商品頁面的展示。這個JavaScript文件的加載可以加上隨機版本號(例如xx.js?v=32353823),這樣就不會被瀏覽器、CDN和反向代理服務器緩存。
這個JavaScript文件非常小,即使每次瀏覽器刷新都訪問JavaScript文件服務器也不會對服務器集群和網絡帶寬造成太大壓力。
6、如何只允許第一個提交的訂單被發送到訂單子系統
由于最終能夠成功秒殺到商品的用戶只有一個,因此需要在用戶提交訂單時,檢查是否已經有訂單提交。如果已經有訂單提交成功,則需要更新 JavaScript文件,更新秒殺開始標志為否,購買按鈕變灰。事實上,由于最終能夠成功提交訂單的用戶只有一個,為了減輕下單頁面服務器的負載壓力,可以控制進入下單頁面的入口,只有少數用戶能進入下單頁面,其他用戶直接進入秒殺結束頁面。
解決方案:假設下單服務器集群有10臺服務器,每臺服務器只接受最多10個下單請求。在還沒有人提交訂單成功之前,如果一臺服務器已經有十單了,而有的一單都沒處理,可能出現的用戶體驗不佳的場景是用戶第一次點擊購買按鈕進入已結束頁面,再刷新一下頁面,有可能被一單都沒有處理的服務器處理,進入了填寫訂單的頁面,可以考慮通過cookie的方式來應對,符合一致性原則。當然可以采用最少連接的負載均衡算法,出現上述情況的概率大大降低。
7、如何進行下單前置檢查
下單服務器檢查本機已處理的下單請求數目:
- 如果超過10條,直接返回已結束頁面給用戶;
- 如果未超過10條,則用戶可進入填寫訂單及確認頁面。
檢查全局已提交訂單數目:
- 已超過秒殺商品總數,返回已結束頁面給用戶;
- 未超過秒殺商品總數,提交到子訂單系統。
秒殺一般是定時上架
該功能實現方式很多。
不過目前比較好的方式是:提前設定好商品的上架時間,用戶可以在前臺看到該商品,但是無法點擊“立即購買”的按鈕。但是需要考慮的是,有人可以繞過前端的限制,直接通過URL的方式發起購買,這就需要在前臺商品頁面,以及bug頁面到后端的數據庫,都要進行時鐘同步。越在后端控制,安全性越高。
定時秒殺的話,就要避免賣家在秒殺前對商品做編輯帶來的不可預期的影響。這種特殊的變更需要多方面評估。一般禁止編輯,如需變更,可以走數據訂正的流程。
減庫存的操作
有兩種選擇,一種是拍下減庫存 另外一種是付款減庫存;目前采用的“拍下減庫存”的方式,拍下就是一瞬間的事,對用戶體驗會好些。
庫存會帶來“超賣”的問題:售出數量多于庫存數量
由于庫存并發更新的問題,導致在實際庫存已經不足的情況下,庫存依然在減,導致賣家的商品賣得件數超過秒殺的預期。方案:采用樂觀鎖。
update auction_auctions set
quantity = #inQuantity#
where auction_id = #itemId# and quantity = #dbQuantity#
還有一種方式,會更好些,叫做嘗試扣減庫存,扣減庫存成功才會進行下單邏輯:
update auction_auctions set
quantity = quantity-#count#
where auction_id = #itemId# and quantity >= #count#
秒殺器的應對
秒殺器一般下單個購買及其迅速,根據購買記錄可以甄別出一部分。可以通過校驗碼達到一定的方法,這就要求校驗碼足夠安全,不被破解,采用的方式有:秒殺專用驗證碼,電視公布驗證碼,秒殺答題。
秒殺架構原則
盡量將請求攔截在系統上游
傳統秒殺系統之所以掛,請求都壓倒了后端數據層,數據讀寫鎖沖突嚴重,并發高響應慢,幾乎所有請求都超時,流量雖大,下單成功的有效流量甚小【一趟火車其實只有2000張票,200w個人來買,基本沒有人能買成功,請求有效率為0】。
讀多寫少的常用多使用緩存
這是一個典型的讀多寫少的應用場景【一趟火車其實只有2000張票,200w個人來買,最多2000個人下單成功,其他人都是查詢庫存,寫比例只有0.1%,讀比例占99.9%】,非常適合使用緩存。
秒殺架構設計
秒殺系統為秒殺而設計,不同于一般的網購行為,參與秒殺活動的用戶更關心的是如何能快速刷新商品頁面,在秒殺開始的時候搶先進入下單頁面,而不是商品詳情等用戶體驗細節,因此秒殺系統的頁面設計應盡可能簡單。
商品頁面中的購買按鈕只有在秒殺活動開始的時候才變亮,在此之前及秒殺商品賣出后,該按鈕都是灰色的,不可以點擊。
下單表單也盡可能簡單,購買數量只能是一個且不可以修改,送貨地址和付款方式都使用用戶默認設置,沒有默認也可以不填,允許等訂單提交后修改;只有第一個提交的訂單發送給網站的訂單子系統,其余用戶提交訂單后只能看到秒殺結束頁面。要做一個這樣的秒殺系統,業務會分為兩個階段:
- 第一個階段是秒殺開始前某個時間到秒殺開始, 這個階段可以稱之為準備階段,用戶在準備階段等待秒殺;
- 第二個階段就是秒殺開始到所有參與秒殺的用戶獲得秒殺結果, 這個就稱為秒殺階段吧。
前端層設計
首先要有一個展示秒殺商品的頁面,在這個頁面上做一個秒殺活動開始的倒計時,在準備階段內用戶會陸續打開這個秒殺的頁面, 并且可能不停的刷新頁面。這里需要考慮兩個問題:
1、秒殺頁面的展示
我們知道一個html頁面還是比較大的,即使做了壓縮,http頭和內容的大小也可能高達數十K,加上其他的css, js,圖片等資源,如果同時有幾千萬人參與一個商品的搶購,一般機房帶寬也就只有1G10G,網絡帶寬就極有可能成為瓶頸,所以這個頁面上各類靜態資源首先應分開存放,然后放到CDN節點上分散壓力,由于CDN節點遍布全國各地,能緩沖掉絕大部分的壓力,而且還比機房帶寬便宜。
2、倒計時
出于性能原因這個一般由js調用客戶端本地時間,就有可能出現客戶端時鐘與服務器時鐘不一致,另外服務器之間也是有可能出現時鐘不一致。客戶端與服務器時鐘不一致可以采用客戶端定時和服務器同步時間,這里考慮一下性能問題,用于同步時間的接口由于不涉及到后端邏輯,只需要將當前Web服務器的時間發送給客戶端就可以了,因此速度很快。
就我以前測試的結果來看,一臺標準的Web服務器2W+QPS不會有問題,如果100W人同時刷,100W QPS也只需要50臺web,一臺硬件LB就可以了~,并且web服務器群是可以很容易的橫向擴展的(LB+DNS輪詢),這個接口可以只返回一小段json格式的數據,而且可以優化一下減少不必要cookie和其他http頭的信息,所以數據量不會很大,一般來說網絡不會成為瓶頸,即使成為瓶頸也可以考慮多機房專線連通,加智能DNS的解決方案;
web服務器之間時間不同步可以采用統一時間服務器的方式,比如每隔1分鐘所有參與秒殺活動的Web服務器就與時間服務器做一次時間同步。
瀏覽器層請求攔截:
- 產品層面,用戶點擊“查詢”或者“購票”后,按鈕置灰,禁止用戶重復提交請求;
- JS層面,限制用戶在x秒之內只能提交一次請求。
站點層設計
前端層的請求攔截,只能攔住小白用戶(不過這是99%的用戶喲),高端的程序員根本不吃這一套,寫個for循環,直接調用你后端的http請求,怎么整?
- 同一個uid,限制訪問頻度,做頁面緩存,x秒內到達站點層的請求,均返回同一頁面
- 同一個item的查詢,例如手機車次,做頁面緩存,x秒內到達站點層的請求,均返回同一頁面
如此限流,又有99%的流量會被攔截在站點層。關注公眾號Java面試那些事兒,回復關鍵字面試,獲取最新的面試資料。
服務層設計
站點層的請求攔截,只能攔住普通程序員,高級黑客,假設他控制了10w臺肉雞(并且假設買票不需要實名認證),這下uid的限制不行了吧?怎么整?
- 大哥,我是服務層,我清楚的知道小米只有1萬部手機,我清楚的知道一列火車只有2000張車票,我透10w個請求去數據庫有什么意義呢?對于寫請求,做請求隊列,每次只透過有限的寫請求去數據層,如果均成功再放下一批,如果庫存不夠則隊列里的寫請求全部返回“已售完”;
- 對于讀請求,還用說么?cache來抗,不管是memcached還是Redis,單機抗個每秒10w應該都是沒什么問題的。
如此限流,只有非常少的寫請求,和非常少的讀緩存mis的請求會透到數據層去,又有99.9%的請求被攔住了。
- 用戶請求分發模塊:使用Nginx或Apache將用戶的請求分發到不同的機器上。
- 用戶請求預處理模塊:判斷商品是不是還有剩余來決定是不是要處理該請求。
- 用戶請求處理模塊:把通過預處理的請求封裝成事務提交給數據庫,并返回是否成功。
- 數據庫接口模塊:該模塊是數據庫的唯一接口,負責與數據庫交互,提供RPC接口供查詢是否秒殺結束、剩余數量等信息。
用戶請求預處理模塊
經過HTTP服務器的分發后,單個服務器的負載相對低了一些,但總量依然可能很大,如果后臺商品已經被秒殺完畢,那么直接給后來的請求返回秒殺失敗即可,不必再進一步發送事務了,示例代碼可以如下所示:
package seckill;
import org.apache.http.HttpRequest;
/**
* 預處理階段,把不必要的請求直接駁回,必要的請求添加到隊列中進入下一階段.
*/
public class PreProcessor {
// 商品是否還有剩余
private static boolean reminds = true;
private static void forbidden() {
// Do something.
}
public static boolean checkReminds() {
if (reminds) {
// 遠程檢測是否還有剩余,該RPC接口應由數據庫服務器提供,不必完全嚴格檢查.
if (!RPC.checkReminds()) {
reminds = false;
}
}
return reminds;
}
/**
* 每一個HTTP請求都要經過該預處理.
*/
public static void preProcess(HttpRequest request) {
if (checkReminds()) {
// 一個并發的隊列
RequestQueue.queue.add(request);
} else {
// 如果已經沒有商品了,則直接駁回請求即可.
forbidden();
}
}
}
并發隊列的選擇
Java的并發包提供了三個常用的并發隊列實現,分別是:ConcurrentLinkedQueue、LinkedBlockingQueue和ArrayBlockingQueue。
- ArrayBlockingQueue是初始容量固定的阻塞隊列,我們可以用來作為數據庫模塊成功競拍的隊列,比如有10個商品,那么我們就設定一個10大小的數組隊列。
- ConcurrentLinkedQueue使用的是CAS原語無鎖隊列實現,是一個異步隊列,入隊的速度很快,出隊進行了加鎖,性能稍慢。
- LinkedBlockingQueue也是阻塞的隊列,入隊和出隊都用了加鎖,當隊空的時候線程會暫時阻塞。
由于我們的系統入隊需求要遠大于出隊需求,一般不會出現隊空的情況,所以我們可以選擇ConcurrentLinkedQueue來作為我們的請求隊列實現:
package seckill;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ConcurrentLinkedQueue;
import org.apache.http.HttpRequest;
public class RequestQueue {
public static ConcurrentLinkedQueue<HttpRequest> queue = new ConcurrentLinkedQueue<HttpRequest>();
}
用戶請求模塊
package seckill;
import org.apache.http.HttpRequest;
public class Processor {
/**
* 發送秒殺事務到數據庫隊列.
*/
public static void kill(BidInfo info) {
DB.bids.add(info);
}
public static void process() {
BidInfo info = new BidInfo(RequestQueue.queue.poll());
if (info != null) {
kill(info);
}
}
}
class BidInfo {
BidInfo(HttpRequest request) {
// Do something.
}
}
數據庫模塊
數據庫主要是使用一個ArrayBlockingQueue來暫存有可能成功的用戶請求。
package seckill;
import java.util.concurrent.ArrayBlockingQueue;
/**
* DB應該是數據庫的唯一接口.
*/
public class DB {
public static int count = 10;
public static ArrayBlockingQueue<BidInfo> bids = new ArrayBlockingQueue<BidInfo>(10);
public static boolean checkReminds() {
// TODO
return true;
}
// 單線程操作
public static void bid() {
BidInfo info = bids.poll();
while (count-- > 0) {
// insert into table Bids values(item_id, user_id, bid_date, other)
// select count(id) from Bids where item_id = ?
// 如果數據庫商品數量大約總數,則標志秒殺已完成,設置標志位reminds = false.
info = bids.poll();
}
}
}
數據庫設計
基本概念
概念一“單庫”:
概念二“分片”:
分片解決的是“數據量太大”的問題,也就是通常說的“水平切分”。一旦引入分片,勢必有“數據路由”的概念,哪個數據訪問哪個庫。路由規則通常有3種方法:
1、范圍:range
- 優點:簡單,容易擴展
- 缺點:各庫壓力不均(新號段更活躍)
2、哈希:hash 【大部分互聯網公司采用的方案二:哈希分庫,哈希路由】
- 優點:簡單,數據均衡,負載均勻
- 缺點:遷移麻煩(2庫擴3庫數據要遷移)
3、路由服務:router-config-server
- 優點:靈活性強,業務與路由算法解耦
- 缺點:每次訪問數據庫前多一次查詢
概念三“分組”:
分組解決“可用性”問題,分組通常通過主從復制的方式實現。互聯網公司數據庫實際軟件架構是:又分片,又分組(如下圖)。
設計思路
數據庫軟件架構師平時設計些什么東西呢?至少要考慮以下四點:
1、如何保證數據的可用性?
解決可用性問題的思路是=>冗余如何保證站點的可用性?
復制站點,冗余站點如何保證服務的可用性?
復制服務,冗余服務如何保證數據的可用性?
復制數據,冗余數據數據的冗余,會帶來一個副作用=>引發一致性問題(先不說一致性問題,先說可用性)。
2、如何保證數據庫“讀”高可用?冗余讀庫:
冗余讀庫帶來的副作用?讀寫有延時,可能不一致。上面這個圖是很多互聯網公司MySQL的架構,寫仍然是單點,不能保證寫高可用。
3、如何保證數據庫“寫”高可用?冗余寫庫:
采用雙主互備的方式,可以冗余寫庫帶來的副作用?雙寫同步,數據可能沖突(例如“自增id”同步沖突),如何解決同步沖突,有兩種常見解決方案:
- 兩個寫庫使用不同的初始值,相同的步長來增加id:1寫庫的id為0,2,4,6...;2寫庫的id為1,3,5,7...;
- 不使用數據的id,業務層自己生成唯一的id,保證數據不沖突。
實際中沒有使用上述兩種架構來做讀寫的“高可用”,采用的是“雙主當主從用”的方式:
仍是雙主,但只有一個主提供服務(讀+寫),另一個主是“shadow-master”,只用來保證高可用,平時不提供服務。master掛了,shadow-master頂上(vip漂移,對業務層透明,不需要人工介入)。這種方式的好處:
- 讀寫沒有延時;
- 讀寫高可用。
不足:
- 不能通過加從庫的方式擴展讀性能;
- 資源利用率為50%,一臺冗余主沒有提供服務。
那如何提高讀性能呢?進入第二個話題,如何提供讀性能。4、如何擴展讀性能提高讀性能的方式大致有三種,第一種是建立索引。這種方式不展開,要提到的一點是,不同的庫可以建立不同的索引。
寫庫不建立索引;線上讀庫建立線上訪問索引,例如uid;線下讀庫建立線下訪問索引,例如time;第二種擴充讀性能的方式是,增加從庫,這種方法大家用的比較多,但是,存在兩個缺點:
- 從庫越多,同步越慢;
- 同步越慢,數據不一致窗口越大(不一致后面說,還是先說讀性能的提高)。
實際中沒有采用這種方法提高數據庫讀性能(沒有從庫),采用的是增加緩存。常見的緩存架構如下:
上游是業務應用,下游是主庫,從庫(讀寫分離),緩存。實際的玩法:服務+數據庫+緩存一套。
業務層不直接面向db和cache,服務層屏蔽了底層db、cache的復雜性。為什么要引入服務層,今天不展開,采用了“服務+數據庫+緩存一套”的方式提供數據訪問,用cache提高讀性能。不管采用主從的方式擴展讀性能,還是緩存的方式擴展讀性能,數據都要復制多份(主+從,db+cache),一定會引發一致性問題。
5、如何保證一致性?主從數據庫的一致性,通常有兩種解決方案:中間件:
高并發下的數據安全 如果某一個key有寫操作,在不一致時間窗口內,中間件會將這個key的讀操作也路由到主庫上。這個方案的缺點是,數據庫中間件的門檻較高(百度,騰訊,阿里,360等一些公司有)。
強制讀主:
上面實際用的“雙主當主從用”的架構,不存在主從不一致的問題。第二類不一致,是db與緩存間的不一致:
常見的緩存架構如上,此時寫操作的順序是:
- 淘汰cache;
- 寫數據庫。
讀操作的順序是:
- 讀cache,如果cache hit則返回;
- 如果cache miss,則讀從庫;
- 讀從庫后,將數據放回cache。
在一些異常時序情況下,有可能從【從庫讀到舊數據(同步還沒有完成),舊數據入cache后】,數據會長期不一致。解決辦法是“緩存雙淘汰”,寫操作時序升級為:
- 淘汰cache;
- 寫數據庫;
- 在經過“主從同步延時窗口時間”后,再次發起一個異步淘汰cache的請求;
這樣,即使有臟數據如cache,一個小的時間窗口之后,臟數據還是會被淘汰。帶來的代價是,多引入一次讀miss(成本可以忽略)。除此之外,最佳實踐之一是:建議為所有cache中的item設置一個超時時間。如何提高數據庫的擴展性?原來用hash的方式路由,分為2個庫,數據量還是太大,要分為3個庫,勢必需要進行數據遷移,有一個很帥氣的“數據庫秒級擴容”方案。如何秒級擴容?首先,我們不做2庫變3庫的擴容,我們做2庫變4庫(庫加倍)的擴容(未來4->8->16)。
服務+數據庫是一套(省去了緩存),數據庫采用“雙主”的模式。擴容步驟:
- 第一步,將一個主庫提升;
- 第二步,修改配置,2庫變4庫(原來MOD2,現在配置修改后MOD4),擴容完成。
原MOD2為偶的部分,現在會MOD4余0或者2;原MOD2為奇的部分,現在會MOD4余1或者3;數據不需要遷移,同時,雙主互相同步,一遍是余0,一邊余2,兩邊數據同步也不會沖突,秒級完成擴容!最后,要做一些收尾工作:
- 將舊的雙主同步解除;
- 增加新的雙主(雙主是保證可用性的,shadow-master平時不提供服務);
- 刪除多余的數據(余0的主,可以將余2的數據刪除掉)。
這樣,秒級別內,我們就完成了2庫變4庫的擴展。
大并發帶來的挑戰
請求接口的合理設計
一個秒殺或者搶購頁面,通常分為2個部分,一個是靜態的HTML等內容,另一個就是參與秒殺的Web后臺請求接口。通常靜態HTML等內容,是通過CDN的部署,一般壓力不大,核心瓶頸實際上在后臺請求接口上。這個后端接口,必須能夠支持高并發請求,同時,非常重要的一點,必須盡可能“快”,在最短的時間里返回用戶的請求結果。為了實現盡可能快這一點,接口的后端存儲使用內存級別的操作會更好一點。仍然直接面向MySQL之類的存儲是不合適的,如果有這種復雜業務的需求,都建議采用異步寫入。
當然,也有一些秒殺和搶購采用“滯后反饋”,就是說秒殺當下不知道結果,一段時間后才可以從頁面中看到用戶是否秒殺成功。但是,這種屬于“偷懶”行為,同時給用戶的體驗也不好,容易被用戶認為是“暗箱操作”。
高并發的挑戰:一定要“快”
我們通常衡量一個Web系統的吞吐率的指標是QPS(Query Per Second,每秒處理請求數),解決每秒數萬次的高并發場景,這個指標非常關鍵。舉個例子,我們假設處理一個業務請求平均響應時間為100ms,同時,系統內有20臺Apache的Web服務器,配置MaxClients為500個(表示Apache的最大連接數目)。
那么,我們的Web系統的理論峰值QPS為(理想化的計算方式):20*500/0.1 = 100000 (10萬QPS)咦?我們的系統似乎很強大,1秒鐘可以處理完10萬的請求,5w/s的秒殺似乎是“紙老虎”哈。實際情況,當然沒有這么理想。在高并發的實際場景下,機器都處于高負載的狀態,在這個時候平均響應時間會被大大增加。
就Web服務器而言,Apache打開了越多的連接進程,CPU需要處理的上下文切換也越多,額外增加了CPU的消耗,然后就直接導致平均響應時間增加。因此上述的MaxClient數目,要根據CPU、內存等硬件因素綜合考慮,絕對不是越多越好。可以通過Apache自帶的abench來測試一下,取一個合適的值。然后,我們選擇內存操作級別的存儲的Redis,在高并發的狀態下,存儲的響應時間至關重要。網絡帶寬雖然也是一個因素,不過,這種請求數據包一般比較小,一般很少成為請求的瓶頸。負載均衡成為系統瓶頸的情況比較少,在這里不做討論哈。
那么問題來了,假設我們的系統,在5w/s的高并發狀態下,平均響應時間從100ms變為250ms(實際情況,甚至更多):20*500/0.25 = 40000 (4萬QPS)于是,我們的系統剩下了4w的QPS,面對5w每秒的請求,中間相差了1w。然后,這才是真正的惡夢開始。
舉個例子,高速路口,1秒鐘來5部車,每秒通過5部車,高速路口運作正常。突然,這個路口1秒鐘只能通過4部車,車流量仍然依舊,結果必定出現大塞車。(5條車道忽然變成4條車道的感覺)。同理,某一個秒內,20*500個可用連接進程都在滿負荷工作中,卻仍然有1萬個新來請求,沒有連接進程可用,系統陷入到異常狀態也是預期之內。
其實在正常的非高并發的業務場景中,也有類似的情況出現,某個業務請求接口出現問題,響應時間極慢,將整個Web請求響應時間拉得很長,逐漸將Web服務器的可用連接數占滿,其他正常的業務請求,無連接進程可用。
更可怕的問題是,是用戶的行為特點,系統越是不可用,用戶的點擊越頻繁,惡性循環最終導致“雪崩”(其中一臺Web機器掛了,導致流量分散到其他正常工作的機器上,再導致正常的機器也掛,然后惡性循環),將整個Web系統拖垮。
重啟與過載保護
如果系統發生“雪崩”,貿然重啟服務,是無法解決問題的。最常見的現象是,啟動起來后,立刻掛掉。這個時候,最好在入口層將流量拒絕,然后再將重啟。如果是Redis/Memcache這種服務也掛了,重啟的時候需要注意“預熱”,并且很可能需要比較長的時間。
秒殺和搶購的場景,流量往往是超乎我們系統的準備和想象的。這個時候,過載保護是必要的。如果檢測到系統滿負載狀態,拒絕請求也是一種保護措施。在前端設置過濾是最簡單的方式,但是,這種做法是被用戶“千夫所指”的行為。
更合適一點的是,將過載保護設置在CGI入口層,快速將客戶的直接請求返回。
作弊的手段:進攻與防守
秒殺和搶購收到了“海量”的請求,實際上里面的水分是很大的。不少用戶,為了“搶“到商品,會使用“刷票工具”等類型的輔助工具,幫助他們發送盡可能多的請求到服務器。還有一部分高級用戶,制作強大的自動請求腳本。
這種做法的理由也很簡單,就是在參與秒殺和搶購的請求中,自己的請求數目占比越多,成功的概率越高。這些都是屬于“作弊的手段”,不過,有“進攻”就有“防守”,這是一場沒有硝煙的戰斗哈。
同一個賬號,一次性發出多個請求
部分用戶通過瀏覽器的插件或者其他工具,在秒殺開始的時間里,以自己的賬號,一次發送上百甚至更多的請求。實際上,這樣的用戶破壞了秒殺和搶購的公平性。這種請求在某些沒有做數據安全處理的系統里,也可能造成另外一種破壞,導致某些判斷條件被繞過。
例如一個簡單的領取邏輯,先判斷用戶是否有參與記錄,如果沒有則領取成功,最后寫入到參與記錄中。這是個非常簡單的邏輯,但是,在高并發的場景下,存在深深的漏洞。
多個并發請求通過負載均衡服務器,分配到內網的多臺Web服務器,它們首先向存儲發送查詢請求,然后,在某個請求成功寫入參與記錄的時間差內,其他的請求獲查詢到的結果都是“沒有參與記錄”。這里,就存在邏輯判斷被繞過的風險。
應對方案:在程序入口處,一個賬號只允許接受1個請求,其他請求過濾。不僅解決了同一個賬號,發送N個請求的問題,還保證了后續的邏輯流程的安全。實現方案,可以通過Redis這種內存緩存服務,寫入一個標志位(只允許1個請求寫成功,結合watch的樂觀鎖的特性),成功寫入的則可以繼續參加。
或者,自己實現一個服務,將同一個賬號的請求放入一個隊列中,處理完一個,再處理下一個。
多個賬號,一次性發送多個請求
很多公司的賬號注冊功能,在發展早期幾乎是沒有限制的,很容易就可以注冊很多個賬號。因此,也導致了出現了一些特殊的工作室,通過編寫自動注冊腳本,積累了一大批“僵尸賬號”,數量龐大,幾萬甚至幾十萬的賬號不等,專門做各種刷的行為(這就是微博中的“僵尸粉“的來源)。
舉個例子,例如微博中有轉發抽獎的活動,如果我們使用幾萬個“僵尸號”去混進去轉發,這樣就可以大大提升我們中獎的概率。這種賬號,使用在秒殺和搶購里,也是同一個道理。例如,iphone官網的搶購,火車票黃牛黨。
應對方案:這種場景,可以通過檢測指定機器IP請求頻率就可以解決,如果發現某個IP請求頻率很高,可以給它彈出一個驗證碼或者直接禁止它的請求:
- 彈出驗證碼,最核心的追求,就是分辨出真實用戶。因此,大家可能經常發現,網站彈出的驗證碼,有些是“鬼神亂舞”的樣子,有時讓我們根本無法看清。他們這樣做的原因,其實也是為了讓驗證碼的圖片不被輕易識別,因為強大的“自動腳本”可以通過圖片識別里面的字符,然后讓腳本自動填寫驗證碼。實際上,有一些非常創新的驗證碼,效果會比較好,例如給你一個簡單問題讓你回答,或者讓你完成某些簡單操作(例如百度貼吧的驗證碼)。
- 直接禁止IP,實際上是有些粗暴的,因為有些真實用戶的網絡場景恰好是同一出口IP的,可能會有“誤傷”。但是這一個做法簡單高效,根據實際場景使用可以獲得很好的效果。
多個賬號,不同IP發送不同請求
所謂道高一尺,魔高一丈。有進攻,就會有防守,永不休止。這些“工作室”,發現你對單機IP請求頻率有控制之后,他們也針對這種場景,想出了他們的“新進攻方案”,就是不斷改變IP。
有同學會好奇,這些隨機IP服務怎么來的。有一些是某些機構自己占據一批獨立IP,然后做成一個隨機代理IP的服務,有償提供給這些“工作室”使用。還有一些更為黑暗一點的,就是通過木馬黑掉普通用戶的電腦,這個木馬也不破壞用戶電腦的正常運作,只做一件事情,就是轉發IP包,普通用戶的電腦被變成了IP代理出口。通過這種做法,黑客就拿到了大量的獨立IP,然后搭建為隨機IP服務,就是為了掙錢。
應對方案:說實話,這種場景下的請求,和真實用戶的行為,已經基本相同了,想做分辨很困難。再做進一步的限制很容易“誤傷“真實用戶,這個時候,通常只能通過設置業務門檻高來限制這種請求了,或者通過賬號行為的”數據挖掘“來提前清理掉它們。僵尸賬號也還是有一些共同特征的,例如賬號很可能屬于同一個號碼段甚至是連號的,活躍度不高,等級低,資料不全等等。根據這些特點,適當設置參與門檻,例如限制參與秒殺的賬號等級。通過這些業務手段,也是可以過濾掉一些僵尸號。
高并發下的數據安全
我們知道在多線程寫入同一個文件的時候,會存現“線程安全”的問題(多個線程同時運行同一段代碼,如果每次運行結果和單線程運行的結果是一樣的,結果和預期相同,就是線程安全的)。如果是MySQL數據庫,可以使用它自帶的鎖機制很好的解決問題,但是,在大規模并發的場景中,是不推薦使用MySQL的。
秒殺和搶購的場景中,還有另外一個問題,就是“超發”,如果在這方面控制不慎,會產生發送過多的情況。我們也曾經聽說過,某些電商搞搶購活動,買家成功拍下后,商家卻不承認訂單有效,拒絕發貨。這里的問題,也許并不一定是商家奸詐,而是系統技術層面存在超發風險導致的。
超發的原因
假設某個搶購場景中,我們一共只有100個商品,在最后一刻,我們已經消耗了99個商品,僅剩最后一個。這個時候,系統發來多個并發請求,這批請求讀取到的商品余量都是99個,然后都通過了這一個余量判斷,最終導致超發。
在上面的這個圖中,就導致了并發用戶B也“搶購成功”,多讓一個人獲得了商品。這種場景,在高并發的情況下非常容易出現。
悲觀鎖思路
解決線程安全的思路很多,可以從“悲觀鎖”的方向開始討論。悲觀鎖,也就是在修改數據的時候,采用鎖定狀態,排斥外部請求的修改。遇到加鎖的狀態,就必須等待。
雖然上述的方案的確解決了線程安全的問題,但是,別忘記,我們的場景是“高并發”。也就是說,會很多這樣的修改請求,每個請求都需要等待“鎖”,某些線程可能永遠都沒有機會搶到這個“鎖”,這種請求就會死在那里。同時,這種請求會很多,瞬間增大系統的平均響應時間,結果是可用連接數被耗盡,系統陷入異常。
FIFO隊列思路
那好,那么我們稍微修改一下上面的場景,我們直接將請求放入隊列中的,采用FIFO(First Input First Output,先進先出),這樣的話,我們就不會導致某些請求永遠獲取不到鎖。看到這里,是不是有點強行將多線程變成單線程的感覺哈。
然后,我們現在解決了鎖的問題,全部請求采用“先進先出”的隊列方式來處理。那么新的問題來了,高并發的場景下,因為請求很多,很可能一瞬間將隊列內存“撐爆”,然后系統又陷入到了異常狀態。
或者設計一個極大的內存隊列,也是一種方案,但是,系統處理完一個隊列內請求的速度根本無法和瘋狂涌入隊列中的數目相比。也就是說,隊列內的請求會越積累越多,最終Web系統平均響應時候還是會大幅下降,系統還是陷入異常。
樂觀鎖思路
這個時候,我們就可以討論一下“樂觀鎖”的思路了。樂觀鎖,是相對于“悲觀鎖”采用更為寬松的加鎖機制,大都是采用帶版本號(Version)更新。實現就是,這個數據所有請求都有資格去修改,但會獲得一個該數據的版本號,只有版本號符合的才能更新成功,其他的返回搶購失敗。這樣的話,我們就不需要考慮隊列的問題,不過,它會增大CPU的計算開銷。但是,綜合來說,這是一個比較好的解決方案。
有很多軟件和服務都“樂觀鎖”功能的支持,例如Redis中的watch就是其中之一。通過這個實現,我們保證了數據的安全。
總結
互聯網正在高速發展,使用互聯網服務的用戶越多,高并發的場景也變得越來越多。電商秒殺和搶購,是兩個比較典型的互聯網高并發場景。雖然我們解決問題的具體技術方案可能千差萬別,但是遇到的挑戰卻是相似的,因此解決問題的思路也異曲同工。