日日操夜夜添-日日操影院-日日草夜夜操-日日干干-精品一区二区三区波多野结衣-精品一区二区三区高清免费不卡

公告:魔扣目錄網為廣大站長提供免費收錄網站服務,提交前請做好本站友鏈:【 網站目錄:http://www.ylptlb.cn 】, 免友鏈快審服務(50元/站),

點擊這里在線咨詢客服
新站提交
  • 網站:51998
  • 待審:31
  • 小程序:12
  • 文章:1030137
  • 會員:747

八個流行的 Python 可視化工具包,你喜歡哪個?

大家好,我是Python/ target=_blank class=infotextkey>Python人工智能技術

喜歡用 Python 做項目的小伙伴不免會遇到這種情況:做圖表時,用哪種好看又實用的可視化工具包呢?之前文章里出現過漂亮的圖表時,也總有讀者在后臺留言問該圖表時用什么工具做的。下面,作者介紹了八種在 Python 中實現的可視化工具包,其中有些包還能用在其它語言中??靵碓囋嚹阆矚g哪個?

用 Python 創建圖形的方法有很多,但是哪種方法是最好的呢?當我們做可視化之前,要先明確一些關于圖像目標的問題:你是想初步了解數據的分布情況?想展示時給人們留下深刻印象?也許你想給某人展示一個內在的形象,一個中庸的形象?

本文將介紹一些常用的 Python 可視化包,包括這些包的優缺點以及分別適用于什么樣的場景。這篇文章只擴展到 2D 圖,為下一次講 3D 圖和商業報表(dashboard)留了一些空間,不過這次要講的包中,許多都可以很好地支持 3D 圖和商業報表。

Matplotlib、Seaborn 和 Pandas

把這三個包放在一起有幾個原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,當你在用 Seaborn 或 Pandas 中的 df.plot() 時,用的其實是別人用 Matplotlib 寫的代碼。因此,這些圖在美化方面是相似的,自定義圖時用的語法也都非常相似。

當提到這些可視化工具時,我想到三個詞:探索(Exploratory)、數據(Data)、分析(Analysis)。這些包都很適合第一次探索數據,但要做演示時用這些包就不夠了。

Matplotlib 是比較低級的庫,但它所支持的自定義程度令人難以置信(所以不要簡單地將其排除在演示所用的包之外?。?,但還有其它更適合做展示的工具。

Matplotlib 還可以選擇樣式(style selection),它模擬了像 ggplot2 和 xkcd 等很流行的美化工具。下面是我用 Matplotlib 及相關工具所做的示例圖:

在處理籃球隊薪資數據時,我想找出薪資中位數最高的團隊。為了展示結果,我將每個球隊的工資用顏色標成條形圖,來說明球員加入哪一支球隊才能獲得更好的待遇。

 

import seaborn as sns

import matplotlib.pyplot as plt

color_order = ['xkcd:cerulean', 'xkcd:ocean',

'xkcd:black','xkcd:royal purple',

'xkcd:royal purple', 'xkcd:navy blue',

'xkcd:powder blue', 'xkcd:light maroon',

'xkcd:lightish blue','xkcd:navy']

sns.barplot(x=top10.Team,

y=top10.Salary,

palette=color_order).set_title('Teams with Highest Median Salary')

plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))

八個流行的 Python 可視化工具包,你喜歡哪個?

第二個圖是回歸實驗殘差的 Q-Q 圖。這張圖的主要目的是展示如何用盡量少的線條做出一張有用的圖,當然也許它可能不那么美觀。

import matplotlib.pyplot as plt

import scipy.stats as stats

#model2 is a regression model

log_resid = model2.predict(X_test)-y_test

stats.probplot(log_resid, dist="norm", plot=plt)

plt.title("Normal Q-Q plot")

plt.show()

八個流行的 Python 可視化工具包,你喜歡哪個?

最終證明,Matplotlib 及其相關工具的效率很高,但就演示而言它們并不是最好的工具。

ggplot(2)

你可能會問,「Aaron,ggplot 是 R 中最常用的可視化包,但你不是要寫 Python 的包嗎?」。人們已經在 Python 中實現了 ggplot2,復制了這個包從美化到語法的一切內容。

在我看過的所有材料中,它的一切都和 ggplot2 很像,但這個包的好處是它依賴于 Pandas Python 包。不過 Pandas Python 包最近棄用了一些方法,導致 Python 版本不兼容。

如果你想在 R 中用真正的 ggplot(除了依賴關系外,它們的外觀、感覺以及語法都是一樣的),我在另外一篇文章中對此進行過討論。

也就是說,如果你一定要在 Python 中用 ggplot,那你就必須要安裝 0.19.2 版的 Pandas,但我建議你最好不要為了使用較低級的繪圖包而降低 Pandas 的版本。

ggplot2(我覺得也包括 Python 的 ggplot)舉足輕重的原因是它們用「圖形語法」來構建圖片。基本前提是你可以實例化圖,然后分別添加不同的特征;也就是說,你可以分別對標題、坐標軸、數據點以及趨勢線等進行美化。

下面是 ggplot 代碼的簡單示例。我們先用 ggplot 實例化圖,設置美化屬性和數據,然后添加點、主題以及坐標軸和標題標簽。另外,搜索公眾號linux就該這樣學后臺回復“git書籍”,獲取一份驚喜禮包。

 

#All Salaries

ggplot(data=df, aes(x=season_start, y=salary, colour=team)) +

geom_point() +

theme(legend.position="none") +

labs(title = 'Salary Over Time', x='Year', y='Salary ($)')

八個流行的 Python 可視化工具包,你喜歡哪個?

Bokeh

Bokeh 很美。從概念上講,Bokeh 類似于 ggplot,它們都是用圖形語法來構建圖片,但 Bokeh 具備可以做出專業圖形和商業報表且便于使用的界面。為了說明這一點,我根據 538 Masculinity Survey 數據集寫了制作直方圖的代碼:

import pandas as pd

from bokeh.plotting import figure

from bokeh.io import show

# is_masc is a one-hot encoded dataframe of responses to the question:

# "Do you identify as masculine?"

#Dataframe Prep

counts = is_masc.sum()

resps = is_masc.columns

#Bokeh

p2 = figure(title='Do You View Yourself As Masculine?',

x_axis_label='Response',

y_axis_label='Count',

x_range=list(resps))

p2.vbar(x=resps, top=counts, width=0.6, fill_color='red', line_color='black')

show(p2)

#Pandas

counts.plot(kind='bar')

八個流行的 Python 可視化工具包,你喜歡哪個?

用 Bokeh 表示調查結果

紅色的條形圖表示 538 個人關于「你認為自己有男子漢氣概嗎?」這一問題的答案。9~14 行的 Bokeh 代碼構建了優雅且專業的響應計數直方圖——字體大小、y 軸刻度和格式等都很合理。

我寫的代碼大部分都用于標記坐標軸和標題,以及為條形圖添加顏色和邊框。在制作美觀且表現力強的圖片時,我更傾向于使用 Bokeh——它已經幫我們完成了大量美化工作。

八個流行的 Python 可視化工具包,你喜歡哪個?

用 Pandas 表示相同的數據

藍色的圖是上面的第 17 行代碼。這兩個直方圖的值是一樣的,但目的不同。在探索性設置中,用 Pandas 寫一行代碼查看數據很方便,但 Bokeh 的美化功能非常強大。

Bokeh 提供的所有便利都要在 matplotlib 中自定義,包括 x 軸標簽的角度、背景線、y 軸刻度以及字體(大小、斜體、粗體)等。下圖展示了一些隨機趨勢,其自定義程度更高:使用了圖例和不同的顏色和線條。

八個流行的 Python 可視化工具包,你喜歡哪個?

Bokeh 還是制作交互式商業報表的絕佳工具。

Plotly

Plotly 非常強大,但用它設置和創建圖形都要花費大量時間,而且都不直觀。在用 Plotly 忙活了大半個上午后,我幾乎什么都沒做出來,干脆直接去吃飯了。我只創建了不帶坐標標簽的條形圖,以及無法刪掉線條的「散點圖」。Ploty 入門時有一些要注意的點:

安裝時要有 API 秘鑰,還要注冊,不是只用 pip 安裝就可以; Plotly 所繪制的數據和布局對象是獨一無二的,但并不直觀; 圖片布局對我來說沒有用(40 行代碼毫無意義?。?

但它也有優點,而且設置中的所有缺點都有相應的解決方法:

你可以在 Plotly 網站和 Python 環境中編輯圖片; 支持交互式圖片和商業報表; Plotly 與 Mapbox 合作,可以自定義地圖; 很有潛力繪制優秀圖形。

以下是我針對這個包編寫的代碼:

#plot 1 - barplot

# **note** - the layout lines do nothing and trip no errors

data = [go.Bar(x=team_ave_df.team,

y=team_ave_df.turnovers_per_mp)]

layout = go.Layout(

title=go.layout.Title(

text='Turnovers per Minute by Team',

xref='paper',

x=0

),

xaxis=go.layout.XAxis(

title = go.layout.xaxis.Title(

text='Team',

font=dict(

family='Courier New, monospace',

size=18,

color='#7f7f7f'

)

)

),

yaxis=go.layout.YAxis(

title = go.layout.yaxis.Title(

text='Average Turnovers/Minute',

font=dict(

family='Courier New, monospace',

size=18,

color='#7f7f7f'

)

)

),

autosize=True,

hovermode='closest')

py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot', sharing='public', fileopt='overwrite')

#plot 2 - attempt at a scatterplot

data = [go.Scatter(x=player_year.minutes_played,

y=player_year.salary,

marker=go.scatter.Marker(color='red',

size=3))]

layout = go.Layout(title="test",

xaxis=dict(title='why'),

yaxis=dict(title='plotly'))

py.iplot(figure_or_data=data, layout=layout, filename='jupyter-plot2', sharing='public')

[Image: image.png]

八個流行的 Python 可視化工具包,你喜歡哪個?

表示不同 NBA 球隊每分鐘平均失誤數的條形圖。

八個流行的 Python 可視化工具包,你喜歡哪個?

表示薪水和在 NBA 的打球時間之間關系的散點圖

總體來說,開箱即用的美化工具看起來很好,但我多次嘗試逐字復制文檔和修改坐標軸標簽時卻失敗了。但下面的圖展示了 Plotly 的潛力,以及我為什么要在它身上花好幾個小時:

八個流行的 Python 可視化工具包,你喜歡哪個?

Plotly 頁面上的一些示例圖

Pygal

Pygal 的名氣就不那么大了,和其它常用的繪圖包一樣,它也是用圖形框架語法來構建圖像的。由于繪圖目標比較簡單,因此這是一個相對簡單的繪圖包。使用 Pygal 非常簡單:

實例化圖片; 用圖片目標屬性格式化; 用 figure.add() 將數據添加到圖片中。

我在使用 Pygal 的過程中遇到的主要問題在于圖片渲染。必須要用 render_to_file 選項,然后在 web 瀏覽器中打開文件,才能看見我剛剛構建的東西。

最終看來這是值得的,因為圖片是交互式的,有令人滿意而且便于自定義的美化功能??偠灾?,這個包看起來不錯,但在文件的創建和渲染部分比較麻煩。

八個流行的 Python 可視化工具包,你喜歡哪個?

.NETworkx

雖然 Networkx 是基于 matplotlib 的,但它仍是圖形分析和可視化的絕佳解決方案。圖形和網絡不是我的專業領域,但 Networkx 可以快速簡便地用圖形表示網絡之間的連接。以下是我針對一個簡單圖形構建的不同的表示,以及一些從斯坦福 SNAP 下載的代碼(關于繪制小型 Facebook 網絡)。

八個流行的 Python 可視化工具包,你喜歡哪個?

我按編號(1~10)用顏色編碼了每個節點,代碼如下:

 

options = {

'node_color' : range(len(G)),

'node_size' : 300,

'width' : 1,

'with_labels' : False,

'cmap' : plt.cm.coolwarm

}

nx.draw(G, **options)

八個流行的 Python 可視化工具包,你喜歡哪個?

用于可視化上面提到的稀疏 Facebook 圖形的代碼如下:

 

import itertools

import networkx as nx

import matplotlib.pyplot as plt

f = open('data/facebook/1684.circles', 'r')

circles = [line.split() for line in f]

f.close()

network = []

for circ in circles:

cleaned = [int(val) for val in circ[1:]]

network.Append(cleaned)

G = nx.Graph()

for v in network:

G.add_nodes_from(v)

edges = [itertools.combinations(net,2) for net in network]

for edge_group in edges:

G.add_edges_from(edge_group)

options = {

'node_color' : 'lime',

'node_size' : 3,

'width' : 1,

'with_labels' : False,

}

nx.draw(G, **options)

八個流行的 Python 可視化工具包,你喜歡哪個?

這個圖形非常稀疏,Networkx 通過最大化每個集群的間隔展現了這種稀疏化。

有很多數據可視化的包,但沒法說哪個是最好的。希望閱讀本文后,你可以了解到在不同的情境下,該如何使用不同的美化工具和代碼。

分享到:
標簽:Python
用戶無頭像

網友整理

注冊時間:

網站:5 個   小程序:0 個  文章:12 篇

  • 51998

    網站

  • 12

    小程序

  • 1030137

    文章

  • 747

    會員

趕快注冊賬號,推廣您的網站吧!
最新入駐小程序

數獨大挑戰2018-06-03

數獨一種數學游戲,玩家需要根據9

答題星2018-06-03

您可以通過答題星輕松地創建試卷

全階人生考試2018-06-03

各種考試題,題庫,初中,高中,大學四六

運動步數有氧達人2018-06-03

記錄運動步數,積累氧氣值。還可偷

每日養生app2018-06-03

每日養生,天天健康

體育訓練成績評定2018-06-03

通用課目體育訓練成績評定