一、前言
C語言程序經過編譯連接后形成編譯、連接后形成的二進制映像文件由棧,堆,數據段(由三部分部分組成:只讀數據段,已經初始化讀寫數據段,未初始化數據段即BBS)和代碼段組成,如下圖所示:

1)只讀數據段:
只讀數據段是程序使用的一些不會被更改的數據,使用這些數據的方式類似查表式的操作,由于這些變量不需要更改,因此只需要放置在只讀存儲器中即可。一般是const修飾的變量以及程序中使用的文字常量一般會存放在只讀數據段中。
2)已初始化的讀寫數據段:
已初始化數據是在程序中聲明,并且具有初值的變量,這些變量需要占用存儲器的空間,在程序執行時它們需要位于可讀寫的內存區域內,并且有初值,以供程序運行時讀寫。在程序中一般為已經初始化的全局變量,已經初始化的靜態局部變量(static修飾的已經初始化的變量)
3)未初始化段(BSS):
二.堆和棧的區別
1)棧(satck):由系統自動分配。例如,聲明在函數中一個局部變量int b;系統自動在棧中為b開辟空間。
2)堆(heap):需程序員自己申請(調用malloc,realloc,calloc),并指明大小,并由程序員進行釋放。
1)棧:在windows下棧是向低地址擴展的數據結構,是一塊連續的內存區域(它的生長方向與內存的生長方向相反)。棧的大小是固定的。如果申請的空間超過棧的剩余空間時,將提示overflow。
2)堆:堆是向高地址擴展的數據結構(它的生長方向與內存的生長方向相同),是不連續的內存區域。這是由于系統使用鏈表來存儲空閑內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限于計算機系統中有效的虛擬內存。
1)棧:只要棧的空間大于所申請空間,系統將為程序提供內存,否則將報異常提示棧溢出。
2)堆:首先應該知道操作系統有一個記錄空閑內存地址的鏈表,但系統收到程序的申請時,會遍歷該鏈表,尋找第一個空間大于所申請空間的堆結點,然后將該結點從空閑鏈表中刪除,并將該結點的空間分配給程序,另外,對于大多數系統,會在這塊內存空間中的首地址處記錄本次分配的大小,這樣,代碼中的free語句才能正確的釋放本內存空間。另外,找到的堆結點的大小不一定正好等于申請的大小,系統會自動的將多余的那部分重新放入空閑鏈表中。
對于堆來講,頻繁的new/delete勢必會造成內存空間的不連續,從而造成大量的碎片,使程序效率降低。對于棧來講,則不會存在這個問題,
1)棧由系統自動分配,速度快。但程序員是無法控制的
2)堆是由malloc分配的內存,一般速度比較慢,而且容易產生碎片,不過用起來最方便。
1)棧:在函數調用時,第一個進棧的是主函數中下一條語句的地址,然后是函數的各個參數,參數是從右往左入棧的,然后是函數中的局部變量。注:靜態變量是不入棧的。
當本次函數調用結束后,局部變量先出棧,然后是參數,最后棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續執行。
2)堆:一般是在堆的頭部用一個字節存放堆的大小。
棧是機器系統提供的數據結構,計算機會在底層對棧提供支持:分配專門的寄存器存放棧的地址,壓棧出棧都有專門的指令執行,這就決定了棧的效率比較高。堆則是C/C++函數庫提供的,它的機制是很復雜的,例如為了分配一塊內存,庫函數會按照一定的算法(具體的算法可以參考數據結構/操作系統)在堆內存中搜索可用的足夠大小的空間,如果沒有足夠大小的空間(可能是由于內存碎片太多),就有可能調用系統功能去增加程序數據段的內存空間,這樣就有機會分到足夠大小的內存,然后進行返回。顯然,堆的效率比棧要低得多。
1)堆都是動態分配的,沒有靜態分配的堆。
2)棧有兩種分配方式:靜態分配和動態分配。靜態分配是編譯器完成的,比如局部變量的分配。動態分配由alloca函數進行分配,但是棧的動態分配和堆是不同的,它的動態分配是由編譯器進行釋放,無需手工實現。但alloca有局限性,不推薦使用。